Frantisek Trejtnar, Alice Laznickova, Milan Laznicek, Zbynek Novy, Theodosia Maina, Berthold A Nock, Martin Behe
{"title":"Distribution, elimination, and renal handling of (99m)technetium-Demogastrin 1.","authors":"Frantisek Trejtnar, Alice Laznickova, Milan Laznicek, Zbynek Novy, Theodosia Maina, Berthold A Nock, Martin Behe","doi":"10.1089/cbr.2011.1008","DOIUrl":null,"url":null,"abstract":"Radiolabeled cholecystokinin/gastrin (CCK) receptor-targeting peptides are promising compounds for radiodiagnosis and radiotherapy of certain malignancies. This study evaluated the pharmacokinetic profile of a CCK-2 receptor-specific peptide, Demogastrin 1, labeled with technetium-99m ((99m)Tc-Demogastrin 1), in rats. To investigate the fate of (99m)Tc-Demogastrin 1 in the rat, biodistribution and elimination studies in vivo were performed, and elimination parameters in perfused rat liver and kidney were determined. Biodistribution studies showed that (99m)Tc-Demogastrin 1 was rapidly cleared from the blood and most organs. A significant amount of radioactivity was detected in the CCK-2 receptor-rich organs, such as the stomach. Low radioactivity was found in the CCK-1 receptor-rich organs. Radioactivity in bowels and stomach declined relatively slowly. High and long-term retention of radioactivity in the kidneys was observed. Elimination of (99m)Tc-Demogastrin 1 via the bile was negligible. A high and rapid renal excretion was observed in elimination experiments in vivo. In the perfused kidney, glomerular filtration was found to be the main renal excretion mechanism of (99m)Tc-Demogastrin 1. Demogastrin 1 was distributed preferentially to the organs expressing CCK-2 receptors. The decisive elimination route of (99m)Tc-Demogastrin 1 in rats was urinary excretion. A high and prolonged renal retention may limit potential clinical use of the compound.","PeriodicalId":518937,"journal":{"name":"Cancer biotherapy & radiopharmaceuticals","volume":" ","pages":"169-74"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/cbr.2011.1008","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer biotherapy & radiopharmaceuticals","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/cbr.2011.1008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Radiolabeled cholecystokinin/gastrin (CCK) receptor-targeting peptides are promising compounds for radiodiagnosis and radiotherapy of certain malignancies. This study evaluated the pharmacokinetic profile of a CCK-2 receptor-specific peptide, Demogastrin 1, labeled with technetium-99m ((99m)Tc-Demogastrin 1), in rats. To investigate the fate of (99m)Tc-Demogastrin 1 in the rat, biodistribution and elimination studies in vivo were performed, and elimination parameters in perfused rat liver and kidney were determined. Biodistribution studies showed that (99m)Tc-Demogastrin 1 was rapidly cleared from the blood and most organs. A significant amount of radioactivity was detected in the CCK-2 receptor-rich organs, such as the stomach. Low radioactivity was found in the CCK-1 receptor-rich organs. Radioactivity in bowels and stomach declined relatively slowly. High and long-term retention of radioactivity in the kidneys was observed. Elimination of (99m)Tc-Demogastrin 1 via the bile was negligible. A high and rapid renal excretion was observed in elimination experiments in vivo. In the perfused kidney, glomerular filtration was found to be the main renal excretion mechanism of (99m)Tc-Demogastrin 1. Demogastrin 1 was distributed preferentially to the organs expressing CCK-2 receptors. The decisive elimination route of (99m)Tc-Demogastrin 1 in rats was urinary excretion. A high and prolonged renal retention may limit potential clinical use of the compound.