Two timescales for longitudinal dispersion in a laminar open-channel flow

IF 3.4 3区 工程技术 Q1 MECHANICS
Yu-fei Wang (王宇飞), Wen-xin Huai (槐文信), Zhong-hua Yang (杨中华), Bin Ji (季斌)
{"title":"Two timescales for longitudinal dispersion in a laminar open-channel flow","authors":"Yu-fei Wang (王宇飞),&nbsp;Wen-xin Huai (槐文信),&nbsp;Zhong-hua Yang (杨中华),&nbsp;Bin Ji (季斌)","doi":"10.1016/S1001-6058(16)60821-1","DOIUrl":null,"url":null,"abstract":"<div><p>At small dimensionless timescales <em>T</em>(= <em>tD/H</em><sup>2</sup>), where <em>t</em> is the time, <em>H</em> is the depth of the channel and <em>D</em> is the molecular diffusion coefficient, the mean transverse concentration along the longitudinal direction is not in a Gaussian distribution and the transverse concentration distribution is nonuniform. However, previous studies found different dimensionless timescales in the early stage, which is not verified experimentally due to the demanding experimental requirements. In this letter, a stochastic method is employed to simulate the early stage of the longitudinal transport when the Peclet number is large. It is shown that the timescale for the transverse distribution to approach uniformity is <em>T = 0.5,</em> which is also the timescale for the dimensionless temporal longitudinal dispersion coefficient to reach its asymptotic value, the timescale for the longitudinal distribution to approach a Gaussian distribution is <em>T = 1.0,</em> which is also the timescale for the dimensionless history mean longitudinal dispersion coefficient to reach its asymptotic value.</p></div>","PeriodicalId":66131,"journal":{"name":"水动力学研究与进展:英文版","volume":"29 6","pages":"Pages 1081-1084"},"PeriodicalIF":3.4000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1001-6058(16)60821-1","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"水动力学研究与进展:英文版","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001605816608211","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 4

Abstract

At small dimensionless timescales T(= tD/H2), where t is the time, H is the depth of the channel and D is the molecular diffusion coefficient, the mean transverse concentration along the longitudinal direction is not in a Gaussian distribution and the transverse concentration distribution is nonuniform. However, previous studies found different dimensionless timescales in the early stage, which is not verified experimentally due to the demanding experimental requirements. In this letter, a stochastic method is employed to simulate the early stage of the longitudinal transport when the Peclet number is large. It is shown that the timescale for the transverse distribution to approach uniformity is T = 0.5, which is also the timescale for the dimensionless temporal longitudinal dispersion coefficient to reach its asymptotic value, the timescale for the longitudinal distribution to approach a Gaussian distribution is T = 1.0, which is also the timescale for the dimensionless history mean longitudinal dispersion coefficient to reach its asymptotic value.

层流明渠中纵向弥散的两个时间尺度
在小量纲时间尺度T(= tD/H2)下,T为时间,H为通道深度,D为分子扩散系数,横向平均浓度沿纵向不服从高斯分布,横向浓度分布不均匀。然而,以往的研究在早期发现了不同的无量纲时间尺度,由于实验要求较高,没有得到实验验证。本文采用随机方法模拟了Peclet数较大时的早期纵向输运过程。结果表明,横向分布趋于均匀的时间标度为T = 0.5,这也是无量纲时间纵向色散系数趋于渐近的时间标度;纵向分布趋于高斯分布的时间标度为T = 1.0,这也是无量纲历史平均纵向色散系数趋于渐近的时间标度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
1240
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信