A one-layer recurrent neural network for pseudoconvex optimization subject to linear equality constraints.

IEEE transactions on neural networks Pub Date : 2011-12-01 Epub Date: 2011-10-31 DOI:10.1109/TNN.2011.2169682
Zhishan Guo, Qingshan Liu, Jun Wang
{"title":"A one-layer recurrent neural network for pseudoconvex optimization subject to linear equality constraints.","authors":"Zhishan Guo,&nbsp;Qingshan Liu,&nbsp;Jun Wang","doi":"10.1109/TNN.2011.2169682","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, a one-layer recurrent neural network is presented for solving pseudoconvex optimization problems subject to linear equality constraints. The global convergence of the neural network can be guaranteed even though the objective function is pseudoconvex. The finite-time state convergence to the feasible region defined by the equality constraints is also proved. In addition, global exponential convergence is proved when the objective function is strongly pseudoconvex on the feasible region. Simulation results on illustrative examples and application on chemical process data reconciliation are provided to demonstrate the effectiveness and characteristics of the neural network.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":" ","pages":"1892-900"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2169682","citationCount":"93","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TNN.2011.2169682","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/10/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 93

Abstract

In this paper, a one-layer recurrent neural network is presented for solving pseudoconvex optimization problems subject to linear equality constraints. The global convergence of the neural network can be guaranteed even though the objective function is pseudoconvex. The finite-time state convergence to the feasible region defined by the equality constraints is also proved. In addition, global exponential convergence is proved when the objective function is strongly pseudoconvex on the feasible region. Simulation results on illustrative examples and application on chemical process data reconciliation are provided to demonstrate the effectiveness and characteristics of the neural network.

基于线性等式约束的一层递归神经网络拟凸优化。
本文提出了一种单层递归神经网络,用于求解线性等式约束下的伪凸优化问题。即使目标函数为伪凸,也能保证神经网络的全局收敛性。并证明了由等式约束定义的可行域的有限时间状态收敛性。此外,还证明了当目标函数在可行域上为强伪凸时,算法具有全局指数收敛性。通过实例仿真和在化工过程数据协调中的应用,验证了该神经网络的有效性和特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE transactions on neural networks
IEEE transactions on neural networks 工程技术-工程:电子与电气
自引率
0.00%
发文量
2
审稿时长
8.7 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信