A comparison of information functions and search strategies for sensor planning in target classification.

Guoxian Zhang, Silvia Ferrari, Chenghui Cai
{"title":"A comparison of information functions and search strategies for sensor planning in target classification.","authors":"Guoxian Zhang,&nbsp;Silvia Ferrari,&nbsp;Chenghui Cai","doi":"10.1109/TSMCB.2011.2165336","DOIUrl":null,"url":null,"abstract":"<p><p>This paper investigates the comparative performance of several information-driven search strategies and decision rules using a canonical target classification problem. Five sensor models are considered: one obtained from classical estimation theory and four obtained from Bernoulli, Poisson, binomial, and mixture-of-binomial distributions. A systematic approach is presented for deriving information functions that represent the expected utility of future sensor measurements from mutual information, Rènyi divergence, Kullback-Leibler divergence, information potential, quadratic entropy, and the Cauchy-Schwarz distance. The resulting information-driven strategies are compared to direct-search, alert-confirm, task-driven (TS), and log-likelihood-ratio (LLR) search strategies. Extensive numerical simulations show that quadratic entropy typically leads to the most effective search strategy with respect to correct-classification rates. In the presence of prior information, the quadratic-entropy-driven strategy also displays the lowest rate of false alarms. However, when prior information is absent or very noisy, TS and LLR strategies achieve the lowest false-alarm rates for the Bernoulli, mixture-of-binomial, and classical sensor models.</p>","PeriodicalId":55006,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","volume":" ","pages":"2-16"},"PeriodicalIF":0.0000,"publicationDate":"2012-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TSMCB.2011.2165336","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMCB.2011.2165336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/10/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

This paper investigates the comparative performance of several information-driven search strategies and decision rules using a canonical target classification problem. Five sensor models are considered: one obtained from classical estimation theory and four obtained from Bernoulli, Poisson, binomial, and mixture-of-binomial distributions. A systematic approach is presented for deriving information functions that represent the expected utility of future sensor measurements from mutual information, Rènyi divergence, Kullback-Leibler divergence, information potential, quadratic entropy, and the Cauchy-Schwarz distance. The resulting information-driven strategies are compared to direct-search, alert-confirm, task-driven (TS), and log-likelihood-ratio (LLR) search strategies. Extensive numerical simulations show that quadratic entropy typically leads to the most effective search strategy with respect to correct-classification rates. In the presence of prior information, the quadratic-entropy-driven strategy also displays the lowest rate of false alarms. However, when prior information is absent or very noisy, TS and LLR strategies achieve the lowest false-alarm rates for the Bernoulli, mixture-of-binomial, and classical sensor models.

目标分类中传感器规划的信息功能与搜索策略比较。
本文利用一个典型目标分类问题,研究了几种信息驱动搜索策略和决策规则的性能比较。考虑了五种传感器模型:一种来自经典估计理论,四种来自伯努利分布、泊松分布、二项分布和混合二项分布。提出了一种系统的方法,用于从互信息、r nyi散度、Kullback-Leibler散度、信息势、二次熵和Cauchy-Schwarz距离中推导信息函数,这些信息函数表示未来传感器测量的预期效用。将得到的信息驱动策略与直接搜索、警报确认、任务驱动(TS)和对数似然比(LLR)搜索策略进行比较。大量的数值模拟表明,二次熵通常会导致关于正确分类率的最有效的搜索策略。在存在先验信息的情况下,二次熵驱动的策略也显示出最低的误报率。然而,当先验信息缺失或噪声很大时,TS和LLR策略对伯努利、混合二项和经典传感器模型的误报率最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
6.0 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信