Real-time vector quantization and clustering based on ordinary differential equations.

IEEE transactions on neural networks Pub Date : 2011-12-01 Epub Date: 2011-10-31 DOI:10.1109/TNN.2011.2172627
Jie Cheng, Mohammad R Sayeh, Mehdi R Zargham, Qiang Cheng
{"title":"Real-time vector quantization and clustering based on ordinary differential equations.","authors":"Jie Cheng,&nbsp;Mohammad R Sayeh,&nbsp;Mehdi R Zargham,&nbsp;Qiang Cheng","doi":"10.1109/TNN.2011.2172627","DOIUrl":null,"url":null,"abstract":"<p><p>This brief presents a dynamical system approach to vector quantization or clustering based on ordinary differential equations with the potential for real-time implementation. Two examples of different pattern clusters demonstrate that the model can successfully quantize different types of input patterns. Furthermore, we analyze and study the stability of our dynamical system. By discovering the equilibrium points for certain input patterns and analyzing their stability, we have shown the quantizing behavior of the system with respect to its vigilance parameter. The proposed system is applied to two real-world problems, providing comparable results to the best reported findings. This validates the effectiveness of our proposed approach.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":" ","pages":"2143-8"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2172627","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TNN.2011.2172627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/10/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This brief presents a dynamical system approach to vector quantization or clustering based on ordinary differential equations with the potential for real-time implementation. Two examples of different pattern clusters demonstrate that the model can successfully quantize different types of input patterns. Furthermore, we analyze and study the stability of our dynamical system. By discovering the equilibrium points for certain input patterns and analyzing their stability, we have shown the quantizing behavior of the system with respect to its vigilance parameter. The proposed system is applied to two real-world problems, providing comparable results to the best reported findings. This validates the effectiveness of our proposed approach.

基于常微分方程的实时矢量量化和聚类。
本文简要介绍了一种基于常微分方程的矢量量化或聚类的动态系统方法,具有实时实现的潜力。两个不同模式聚类的实例表明,该模型可以成功地量化不同类型的输入模式。此外,我们还分析和研究了动力系统的稳定性。通过发现某些输入模式的平衡点并分析其稳定性,我们给出了系统对其警戒参数的量化行为。提出的系统应用于两个现实世界的问题,提供了可比较的结果,最好的报告结果。这验证了我们提出的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE transactions on neural networks
IEEE transactions on neural networks 工程技术-工程:电子与电气
自引率
0.00%
发文量
2
审稿时长
8.7 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信