Parallel programmable asynchronous neighborhood mechanism for Kohonen SOM implemented in CMOS technology.

IEEE transactions on neural networks Pub Date : 2011-12-01 Epub Date: 2011-10-28 DOI:10.1109/TNN.2011.2169809
Rafał Długosz, Marta Kolasa, Witold Pedrycz, Michał Szulc
{"title":"Parallel programmable asynchronous neighborhood mechanism for Kohonen SOM implemented in CMOS technology.","authors":"Rafał Długosz,&nbsp;Marta Kolasa,&nbsp;Witold Pedrycz,&nbsp;Michał Szulc","doi":"10.1109/TNN.2011.2169809","DOIUrl":null,"url":null,"abstract":"<p><p>We present a new programmable neighborhood mechanism for hardware implemented Kohonen self-organizing maps (SOMs) with three different map topologies realized on a single chip. The proposed circuit comes as a fully parallel and asynchronous architecture. The mechanism is very fast. In a medium sized map with several hundreds neurons implemented in the complementary metal-oxide semiconductor 0.18 μm technology, all neurons start adapting the weights after no more than 11 ns. The adaptation is then carried out in parallel. This is an evident advantage in comparison with the commonly used software-realized SOMs. The circuit is robust against the process, supply voltage and environment temperature variations. Due to a simple structure, it features low energy consumption of a few pJ per neuron per a single learning pattern. In this paper, we discuss different aspects of hardware realization, such as a suitable selection of the map topology and the initial neighborhood range, as the optimization of these parameters is essential when looking from the circuit complexity point of view. For the optimal values of these parameters, the chip area and the power dissipation can be reduced even by 60% and 80%, respectively, without affecting the quality of learning.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":" ","pages":"2091-104"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2169809","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TNN.2011.2169809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/10/28 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

We present a new programmable neighborhood mechanism for hardware implemented Kohonen self-organizing maps (SOMs) with three different map topologies realized on a single chip. The proposed circuit comes as a fully parallel and asynchronous architecture. The mechanism is very fast. In a medium sized map with several hundreds neurons implemented in the complementary metal-oxide semiconductor 0.18 μm technology, all neurons start adapting the weights after no more than 11 ns. The adaptation is then carried out in parallel. This is an evident advantage in comparison with the commonly used software-realized SOMs. The circuit is robust against the process, supply voltage and environment temperature variations. Due to a simple structure, it features low energy consumption of a few pJ per neuron per a single learning pattern. In this paper, we discuss different aspects of hardware realization, such as a suitable selection of the map topology and the initial neighborhood range, as the optimization of these parameters is essential when looking from the circuit complexity point of view. For the optimal values of these parameters, the chip area and the power dissipation can be reduced even by 60% and 80%, respectively, without affecting the quality of learning.

基于CMOS技术的Kohonen SOM并行可编程异步邻域机制实现。
我们提出了一种新的可编程邻域机制,用于硬件实现Kohonen自组织地图(SOMs),在单个芯片上实现了三种不同的地图拓扑。所提出的电路是一个完全并行和异步的架构。这个机制非常快。在采用互补金属氧化物半导体0.18 μm技术实现的具有数百个神经元的中等大小地图中,所有神经元在不超过11 ns后开始适应权重。然后并行地进行适应。与常用的软件实现的som相比,这是一个明显的优势。该电路对工艺、电源电压和环境温度变化具有鲁棒性。由于结构简单,它具有低能量消耗的特点,每个神经元每一个单一的学习模式几个pJ。在本文中,我们讨论了硬件实现的不同方面,例如合适的地图拓扑和初始邻域范围的选择,因为从电路复杂性的角度来看,这些参数的优化是必不可少的。对于这些参数的最优值,在不影响学习质量的情况下,芯片面积和功耗可以分别减少60%和80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE transactions on neural networks
IEEE transactions on neural networks 工程技术-工程:电子与电气
自引率
0.00%
发文量
2
审稿时长
8.7 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信