{"title":"Bioinspired neural network for real-time cooperative hunting by multirobots in unknown environments.","authors":"Jianjun Ni, Simon X Yang","doi":"10.1109/TNN.2011.2169808","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple robot cooperation is a challenging and critical issue in robotics. To conduct the cooperative hunting by multirobots in unknown and dynamic environments, the robots not only need to take into account basic problems (such as searching, path planning, and collision avoidance), but also need to cooperate in order to pursue and catch the evaders efficiently. In this paper, a novel approach based on a bioinspired neural network is proposed for the real-time cooperative hunting by multirobots, where the locations of evaders and the environment are unknown and changing. The bioinspired neural network is used for cooperative pursuing by the multirobot team. Some other algorithms are used to enable the robots to catch the evaders efficiently, such as the dynamic alliance and formation construction algorithm. In the proposed approach, the pursuing alliances can dynamically change and the robot motion can be adjusted in real-time to pursue the evader cooperatively, to guarantee that all the evaders can be caught efficiently. The proposed approach can deal with various situations such as when some robots break down, the environment has different boundary shapes, or the obstacles are linked with different shapes. The simulation results show that the proposed approach is capable of guiding the robots to achieve the hunting of multiple evaders in real-time efficiently.</p>","PeriodicalId":13434,"journal":{"name":"IEEE transactions on neural networks","volume":" ","pages":"2062-77"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TNN.2011.2169808","citationCount":"114","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TNN.2011.2169808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/10/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 114
Abstract
Multiple robot cooperation is a challenging and critical issue in robotics. To conduct the cooperative hunting by multirobots in unknown and dynamic environments, the robots not only need to take into account basic problems (such as searching, path planning, and collision avoidance), but also need to cooperate in order to pursue and catch the evaders efficiently. In this paper, a novel approach based on a bioinspired neural network is proposed for the real-time cooperative hunting by multirobots, where the locations of evaders and the environment are unknown and changing. The bioinspired neural network is used for cooperative pursuing by the multirobot team. Some other algorithms are used to enable the robots to catch the evaders efficiently, such as the dynamic alliance and formation construction algorithm. In the proposed approach, the pursuing alliances can dynamically change and the robot motion can be adjusted in real-time to pursue the evader cooperatively, to guarantee that all the evaders can be caught efficiently. The proposed approach can deal with various situations such as when some robots break down, the environment has different boundary shapes, or the obstacles are linked with different shapes. The simulation results show that the proposed approach is capable of guiding the robots to achieve the hunting of multiple evaders in real-time efficiently.