Generalized score matching for general domains.

IF 1.4 4区 数学 Q2 MATHEMATICS, APPLIED
Information and Inference-A Journal of the Ima Pub Date : 2021-01-25 eCollection Date: 2022-06-01 DOI:10.1093/imaiai/iaaa041
Shiqing Yu, Mathias Drton, Ali Shojaie
{"title":"Generalized score matching for general domains.","authors":"Shiqing Yu,&nbsp;Mathias Drton,&nbsp;Ali Shojaie","doi":"10.1093/imaiai/iaaa041","DOIUrl":null,"url":null,"abstract":"<p><p>Estimation of density functions supported on general domains arises when the data are naturally restricted to a proper subset of the real space. This problem is complicated by typically intractable normalizing constants. Score matching provides a powerful tool for estimating densities with such intractable normalizing constants but as originally proposed is limited to densities on [Formula: see text] and [Formula: see text]. In this paper, we offer a natural generalization of score matching that accommodates densities supported on a very general class of domains. We apply the framework to truncated graphical and pairwise interaction models and provide theoretical guarantees for the resulting estimators. We also generalize a recently proposed method from bounded to unbounded domains and empirically demonstrate the advantages of our method.</p>","PeriodicalId":45437,"journal":{"name":"Information and Inference-A Journal of the Ima","volume":"11 2","pages":"739-780"},"PeriodicalIF":1.4000,"publicationDate":"2021-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9203079/pdf/iaaa041.pdf","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Inference-A Journal of the Ima","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imaiai/iaaa041","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/6/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 16

Abstract

Estimation of density functions supported on general domains arises when the data are naturally restricted to a proper subset of the real space. This problem is complicated by typically intractable normalizing constants. Score matching provides a powerful tool for estimating densities with such intractable normalizing constants but as originally proposed is limited to densities on [Formula: see text] and [Formula: see text]. In this paper, we offer a natural generalization of score matching that accommodates densities supported on a very general class of domains. We apply the framework to truncated graphical and pairwise interaction models and provide theoretical guarantees for the resulting estimators. We also generalize a recently proposed method from bounded to unbounded domains and empirically demonstrate the advantages of our method.

通用域的广义分数匹配。
当数据自然地限制在真实空间的适当子集中时,就会出现在一般域上支持的密度函数的估计。通常难以处理的正则化常数使这个问题变得复杂。分数匹配为估计密度提供了一个强大的工具,但正如最初提出的那样,它仅限于[公式:见文本]和[公式:见文本]上的密度。在本文中,我们提供了分数匹配的自然泛化,以适应在非常一般的域类上支持的密度。我们将该框架应用于截断图形和成对交互模型,并为得到的估计量提供了理论保证。我们还将最近提出的一种方法从有界域推广到无界域,并通过经验证明了该方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信