Dual adaptive dynamic control of mobile robots using neural networks.

Marvin K Bugeja, Simon G Fabri, Liberato Camilleri
{"title":"Dual adaptive dynamic control of mobile robots using neural networks.","authors":"Marvin K Bugeja,&nbsp;Simon G Fabri,&nbsp;Liberato Camilleri","doi":"10.1109/TSMCB.2008.2002851","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes two novel dual adaptive neural control schemes for the dynamic control of nonholonomic mobile robots. The two schemes are developed in discrete time, and the robot's nonlinear dynamic functions are assumed to be unknown. Gaussian radial basis function and sigmoidal multilayer perceptron neural networks are used for function approximation. In each scheme, the unknown network parameters are estimated stochastically in real time, and no preliminary offline neural network training is used. In contrast to other adaptive techniques hitherto proposed in the literature on mobile robots, the dual control laws presented in this paper do not rely on the heuristic certainty equivalence property but account for the uncertainty in the estimates. This results in a major improvement in tracking performance, despite the plant uncertainty and unmodeled dynamics. Monte Carlo simulation and statistical hypothesis testing are used to illustrate the effectiveness of the two proposed stochastic controllers as applied to the trajectory-tracking problem of a differentially driven wheeled mobile robot.</p>","PeriodicalId":55006,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","volume":" ","pages":"129-41"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TSMCB.2008.2002851","citationCount":"98","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMCB.2008.2002851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 98

Abstract

This paper proposes two novel dual adaptive neural control schemes for the dynamic control of nonholonomic mobile robots. The two schemes are developed in discrete time, and the robot's nonlinear dynamic functions are assumed to be unknown. Gaussian radial basis function and sigmoidal multilayer perceptron neural networks are used for function approximation. In each scheme, the unknown network parameters are estimated stochastically in real time, and no preliminary offline neural network training is used. In contrast to other adaptive techniques hitherto proposed in the literature on mobile robots, the dual control laws presented in this paper do not rely on the heuristic certainty equivalence property but account for the uncertainty in the estimates. This results in a major improvement in tracking performance, despite the plant uncertainty and unmodeled dynamics. Monte Carlo simulation and statistical hypothesis testing are used to illustrate the effectiveness of the two proposed stochastic controllers as applied to the trajectory-tracking problem of a differentially driven wheeled mobile robot.

基于神经网络的移动机器人双自适应动态控制。
针对非完整移动机器人的动态控制问题,提出了两种新的双自适应神经控制方案。这两种方案都是在离散时间内进行的,并且假设机器人的非线性动力学函数是未知的。采用高斯径向基函数和s型多层感知器神经网络进行函数逼近。每种方案都是实时随机估计未知网络参数,不进行初步的离线神经网络训练。与文献中迄今提出的其他移动机器人自适应技术相比,本文提出的对偶控制律不依赖于启发式确定性等价性,而是考虑了估计中的不确定性。尽管存在工厂不确定性和未建模的动态,但这导致跟踪性能的重大改进。采用蒙特卡罗仿真和统计假设检验验证了所提出的两种随机控制器在差分驱动轮式移动机器人轨迹跟踪问题中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
6.0 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信