Multi-sensor physical activity recognition in free-living.

Katherine Ellis, Suneeta Godbole, Jacqueline Kerr, Gert Lanckriet
{"title":"Multi-sensor physical activity recognition in free-living.","authors":"Katherine Ellis,&nbsp;Suneeta Godbole,&nbsp;Jacqueline Kerr,&nbsp;Gert Lanckriet","doi":"10.1145/2638728.2641673","DOIUrl":null,"url":null,"abstract":"<p><p>Physical activity monitoring in free-living populations has many applications for public health research, weight-loss interventions, context-aware recommendation systems and assistive technologies. We present a system for physical activity recognition that is learned from a free-living dataset of 40 women who wore multiple sensors for seven days. The multi-level classification system first learns low-level codebook representations for each sensor and uses a random forest classifier to produce minute-level probabilities for each activity class. Then a higher-level HMM layer learns patterns of transitions and durations of activities over time to smooth the minute-level predictions. [Formula: see text].</p>","PeriodicalId":90688,"journal":{"name":"Proceedings of the ... ACM International Conference on Ubiquitous Computing . UbiComp (Conference)","volume":" ","pages":"431-440"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/2638728.2641673","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM International Conference on Ubiquitous Computing . UbiComp (Conference)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2638728.2641673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

Physical activity monitoring in free-living populations has many applications for public health research, weight-loss interventions, context-aware recommendation systems and assistive technologies. We present a system for physical activity recognition that is learned from a free-living dataset of 40 women who wore multiple sensors for seven days. The multi-level classification system first learns low-level codebook representations for each sensor and uses a random forest classifier to produce minute-level probabilities for each activity class. Then a higher-level HMM layer learns patterns of transitions and durations of activities over time to smooth the minute-level predictions. [Formula: see text].

Abstract Image

Abstract Image

Abstract Image

自由生活中的多传感器身体活动识别。
自由生活人群的身体活动监测在公共卫生研究、减肥干预、情境感知推荐系统和辅助技术方面有许多应用。我们提出了一个身体活动识别系统,该系统是从40名女性的自由生活数据集中学习的,这些女性在7天内佩戴了多个传感器。多级分类系统首先为每个传感器学习低级码本表示,并使用随机森林分类器为每个活动类生成分钟级概率。然后,更高级的HMM层学习过渡模式和活动持续时间,以平滑分钟级的预测。[公式:见正文]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信