Jean-Dominique Gallezot, John D Beaver, Roger N Gunn, Nabeel Nabulsi, David Weinzimmer, Tarun Singhal, Mark Slifstein, Krista Fowles, Yu-Shin Ding, Yiyun Huang, Marc Laruelle, Richard E Carson, Eugenii A Rabiner
{"title":"Affinity and selectivity of [¹¹C]-(+)-PHNO for the D3 and D2 receptors in the rhesus monkey brain in vivo.","authors":"Jean-Dominique Gallezot, John D Beaver, Roger N Gunn, Nabeel Nabulsi, David Weinzimmer, Tarun Singhal, Mark Slifstein, Krista Fowles, Yu-Shin Ding, Yiyun Huang, Marc Laruelle, Richard E Carson, Eugenii A Rabiner","doi":"10.1002/syn.21535","DOIUrl":null,"url":null,"abstract":"<p><p>Although [¹¹C]-(+)-PHNO has enabled quantification of the dopamine-D3 receptor (D3R) in the human brain in vivo, its selectivity for the D3R is not sufficiently high to allow us to disregard its binding to the dopamine-D2 receptor (D2R). We quantified the affinity of [¹¹C]-(+)-PHNO for the D2R and D3R in the living primate brain. Two rhesus monkeys were examined on four occasions each, with [¹¹C]-(+)-PHNO administered in a bolus + infusion paradigm. Varying doses of unlabeled (+)-PHNO were coadministered on each occasion (total doses ranging from 0.09 to 5.61 μg kg⁻¹). The regional binding potential (BP(ND) ) and the corresponding doses of injected (+)-PHNO were used as inputs in a model that quantified the affinity of (+)-PHNO for the D2R and D3R, as well as the regional fractions of the [¹¹C]-(+)-PHNO signal attributable to D3R binding. (+)-PHNO in vivo affinity for the D3R (K(d)/f(ND) ~0.23-0.56 nM) was 25- to 48-fold higher than that for the D2R (K(d)/f(ND) ~11-14 nM). The tracer limits for (+)-PHNO (dose associated with D3R occupancy ~10%) were estimated at ~0.02-0.04 μg kg⁻¹ injected mass for anesthetized primate and at 0.01-0.02 μg kg⁻¹ for awake human positron emission tomography (PET) studies. Our data enabled a rational design and interpretation of future PET studies with [¹¹C]-(+)-PHNO.</p>","PeriodicalId":118978,"journal":{"name":"Synapse (New York, N.y.)","volume":" ","pages":"489-500"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/syn.21535","citationCount":"86","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synapse (New York, N.y.)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/syn.21535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/2/24 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 86
Abstract
Although [¹¹C]-(+)-PHNO has enabled quantification of the dopamine-D3 receptor (D3R) in the human brain in vivo, its selectivity for the D3R is not sufficiently high to allow us to disregard its binding to the dopamine-D2 receptor (D2R). We quantified the affinity of [¹¹C]-(+)-PHNO for the D2R and D3R in the living primate brain. Two rhesus monkeys were examined on four occasions each, with [¹¹C]-(+)-PHNO administered in a bolus + infusion paradigm. Varying doses of unlabeled (+)-PHNO were coadministered on each occasion (total doses ranging from 0.09 to 5.61 μg kg⁻¹). The regional binding potential (BP(ND) ) and the corresponding doses of injected (+)-PHNO were used as inputs in a model that quantified the affinity of (+)-PHNO for the D2R and D3R, as well as the regional fractions of the [¹¹C]-(+)-PHNO signal attributable to D3R binding. (+)-PHNO in vivo affinity for the D3R (K(d)/f(ND) ~0.23-0.56 nM) was 25- to 48-fold higher than that for the D2R (K(d)/f(ND) ~11-14 nM). The tracer limits for (+)-PHNO (dose associated with D3R occupancy ~10%) were estimated at ~0.02-0.04 μg kg⁻¹ injected mass for anesthetized primate and at 0.01-0.02 μg kg⁻¹ for awake human positron emission tomography (PET) studies. Our data enabled a rational design and interpretation of future PET studies with [¹¹C]-(+)-PHNO.