Finding Similar Tweets in Health Related Topics.

Danny Villanueva-Vega, Manuel Rodriguez-Martinez
{"title":"Finding Similar Tweets in Health Related Topics.","authors":"Danny Villanueva-Vega,&nbsp;Manuel Rodriguez-Martinez","doi":"10.1109/icdh52753.2021.00033","DOIUrl":null,"url":null,"abstract":"<p><p>Social networks have become a very important means to facilitate the creation and sharing of information. They also provide real-time information on sales, marketing, politics, natural disasters, and crisis situations, among others. In this work, we investigate neural models for text similarity that can be used to: 1) determine if messages are related or not with a disease, 2) group similar messages to those that we have already captured, analyzed or stored, and 3) find similarity indices between messages using different learning algorithms. Our results show that we can achieve 90% accuracy on the task of classifying which of two tweets is more similar to a sample tweet.</p>","PeriodicalId":93401,"journal":{"name":"2021 IEEE International Conference on Digital Health (ICDH)","volume":"2021 ","pages":"184-190"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8767031/pdf/nihms-1726819.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Digital Health (ICDH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icdh52753.2021.00033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Social networks have become a very important means to facilitate the creation and sharing of information. They also provide real-time information on sales, marketing, politics, natural disasters, and crisis situations, among others. In this work, we investigate neural models for text similarity that can be used to: 1) determine if messages are related or not with a disease, 2) group similar messages to those that we have already captured, analyzed or stored, and 3) find similarity indices between messages using different learning algorithms. Our results show that we can achieve 90% accuracy on the task of classifying which of two tweets is more similar to a sample tweet.

Abstract Image

Abstract Image

Abstract Image

在健康相关主题中查找相似的tweet。
社交网络已经成为促进信息创造和共享的一个非常重要的手段。它们还提供有关销售、市场营销、政治、自然灾害和危机情况等方面的实时信息。在这项工作中,我们研究了文本相似度的神经模型,可用于:1)确定消息是否与疾病相关,2)将类似的消息与我们已经捕获、分析或存储的消息分组,以及3)使用不同的学习算法找到消息之间的相似度指数。我们的结果表明,在分类两篇推文中哪一篇与样本推文更相似的任务上,我们可以达到90%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信