RYR2 mutation in non-small cell lung cancer prolongs survival via down-regulation of DKK1 and up-regulation of GS1-115G20.1: A weighted gene Co-expression network analysis and risk prognostic models
Wenjun Ren, Yongwu Li, Xi Chen, Sheng Hu, Wanli Cheng, Yu Cao, Jingcheng Gao, Xia Chen, Da Xiong, Hongrong Li, Ping Wang
{"title":"RYR2 mutation in non-small cell lung cancer prolongs survival via down-regulation of DKK1 and up-regulation of GS1-115G20.1: A weighted gene Co-expression network analysis and risk prognostic models","authors":"Wenjun Ren, Yongwu Li, Xi Chen, Sheng Hu, Wanli Cheng, Yu Cao, Jingcheng Gao, Xia Chen, Da Xiong, Hongrong Li, Ping Wang","doi":"10.1049/syb2.12038","DOIUrl":null,"url":null,"abstract":"<p><i>RYR2</i> mutation is clinically frequent in non-small cell lung cancer (NSCLC) with its function being elusive. We downloaded lung squamous cell carcinoma and lung adenocarcinoma samples from the TCGA database, split the samples into <i>RYR2</i> mutant group (<i>n</i> = 337) and <i>RYR2</i> wild group (<i>n</i> = 634), and established Kaplan-Meier curves. The results showed that <i>RYR2</i> mutant group lived longer than the wild group (<i>p</i> = 0.027). Weighted gene co-expression network analysis (WGCNA) of differentially expressed genes (DEGs) yielded prognosis-related genes. Five mRNAs and 10 lncRNAs were selected to build survival prognostic models with other clinical features. The AUCs of 2 models are 0.622 and 0.565 for predicting survival at 3 years. Among these genes, the AUCs of <i>DKK1</i> and <i>GS1-115G20.1</i> expression levels were 0.607 and 0.560, respectively, which predicted the 3-year survival rate of NSCLC sufferers. GSEA identified an association of high <i>DKK1</i> expression with <i>TP53</i>, <i>MTOR</i>, and <i>VEGF</i> expression. Several target miRNAs interacting with <i>GS1-115G20.1</i> were observed to show the relationship with the phenotype, treatment, and survival of NSCLC. NSCLC patients with <i>RYR2</i> mutation may obtain better prognosis by down-regulating <i>DKK1</i> and up-regulating <i>GS1-115G20.1</i>.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2f/bc/SYB2-16-43.PMC8965387.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12038","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5
Abstract
RYR2 mutation is clinically frequent in non-small cell lung cancer (NSCLC) with its function being elusive. We downloaded lung squamous cell carcinoma and lung adenocarcinoma samples from the TCGA database, split the samples into RYR2 mutant group (n = 337) and RYR2 wild group (n = 634), and established Kaplan-Meier curves. The results showed that RYR2 mutant group lived longer than the wild group (p = 0.027). Weighted gene co-expression network analysis (WGCNA) of differentially expressed genes (DEGs) yielded prognosis-related genes. Five mRNAs and 10 lncRNAs were selected to build survival prognostic models with other clinical features. The AUCs of 2 models are 0.622 and 0.565 for predicting survival at 3 years. Among these genes, the AUCs of DKK1 and GS1-115G20.1 expression levels were 0.607 and 0.560, respectively, which predicted the 3-year survival rate of NSCLC sufferers. GSEA identified an association of high DKK1 expression with TP53, MTOR, and VEGF expression. Several target miRNAs interacting with GS1-115G20.1 were observed to show the relationship with the phenotype, treatment, and survival of NSCLC. NSCLC patients with RYR2 mutation may obtain better prognosis by down-regulating DKK1 and up-regulating GS1-115G20.1.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.