Mass spectrometry based metabolomics for small molecule metabolites mining and confirmation as potential biomarkers for schistosomiasis - case of the Okavango Delta communities in Botswana.
Sedireng M Ndolo, Matshediso Zachariah, Lebotse Molefi, Nthabiseng Phaladze, Kwenga F Sichilongo
{"title":"Mass spectrometry based metabolomics for small molecule metabolites mining and confirmation as potential biomarkers for schistosomiasis - case of the Okavango Delta communities in Botswana.","authors":"Sedireng M Ndolo, Matshediso Zachariah, Lebotse Molefi, Nthabiseng Phaladze, Kwenga F Sichilongo","doi":"10.1080/14789450.2021.2012454","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Metabolomics for identifying schistosomiasis biomarkers in noninvasive samples at various infection stages is being actively explored. The literature on the traditional detection of schistosomiasis in human specimens is well documented. However, state-of-the-art technologies based on mass spectrometry have simplified the use of biomarkers for diagnostics. This review examines methods currently in use for the metabolomics of small molecules using separation science and mass spectrometry.</p><p><strong>Area covered: </strong>This article highlights the evolution of traditional diagnostic methods for schistosomiasis based on inter alia microscopy, immunology, and polymerase chain reaction. An exhaustive literature search of metabolite mining, focusing on separation science and mass spectrometry, is presented. A comparative analysis of mass spectrometry methods was undertaken, including a projection for the future.</p><p><strong>Expert commentary: </strong>Mass spectrometry metabolomics for schistosomiasis will lead to biomarker discovery for noninvasive human samples. These biomarkers, together with those from other neglected tropical diseases, such as malaria and sleeping sickness, could be incorporated as arrays on a single biosensor chip and inserted into smartphones, in order to improve surveillance, monitoring, and management.</p>","PeriodicalId":50463,"journal":{"name":"Expert Review of Proteomics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/14789450.2021.2012454","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Metabolomics for identifying schistosomiasis biomarkers in noninvasive samples at various infection stages is being actively explored. The literature on the traditional detection of schistosomiasis in human specimens is well documented. However, state-of-the-art technologies based on mass spectrometry have simplified the use of biomarkers for diagnostics. This review examines methods currently in use for the metabolomics of small molecules using separation science and mass spectrometry.
Area covered: This article highlights the evolution of traditional diagnostic methods for schistosomiasis based on inter alia microscopy, immunology, and polymerase chain reaction. An exhaustive literature search of metabolite mining, focusing on separation science and mass spectrometry, is presented. A comparative analysis of mass spectrometry methods was undertaken, including a projection for the future.
Expert commentary: Mass spectrometry metabolomics for schistosomiasis will lead to biomarker discovery for noninvasive human samples. These biomarkers, together with those from other neglected tropical diseases, such as malaria and sleeping sickness, could be incorporated as arrays on a single biosensor chip and inserted into smartphones, in order to improve surveillance, monitoring, and management.
期刊介绍:
Expert Review of Proteomics (ISSN 1478-9450) seeks to collect together technologies, methods and discoveries from the field of proteomics to advance scientific understanding of the many varied roles protein expression plays in human health and disease.
The journal coverage includes, but is not limited to, overviews of specific technological advances in the development of protein arrays, interaction maps, data archives and biological assays, performance of new technologies and prospects for future drug discovery.
The journal adopts the unique Expert Review article format, offering a complete overview of current thinking in a key technology area, research or clinical practice, augmented by the following sections:
Expert Opinion - a personal view on the most effective or promising strategies and a clear perspective of future prospects within a realistic timescale
Article highlights - an executive summary cutting to the author''s most critical points.