Exploring Machine Teaching with Children.

Utkarsh Dwivedi, Jaina Gandhi, Raj Parikh, Merijke Coenraad, Elizabeth Bonsignore, Hernisa Kacorri
{"title":"Exploring Machine Teaching with Children.","authors":"Utkarsh Dwivedi,&nbsp;Jaina Gandhi,&nbsp;Raj Parikh,&nbsp;Merijke Coenraad,&nbsp;Elizabeth Bonsignore,&nbsp;Hernisa Kacorri","doi":"10.1109/vl/hcc51201.2021.9576171","DOIUrl":null,"url":null,"abstract":"<p><p>Iteratively building and testing machine learning models can help children develop creativity, flexibility, and comfort with machine learning and artificial intelligence. We explore how children use machine teaching interfaces with a team of 14 children (aged 7-13 years) and adult co-designers. Children trained image classifiers and tested each other's models for robustness. Our study illuminates how children reason about ML concepts, offering these insights for designing machine teaching experiences for children: (i) ML metrics (<i>e.g.</i> confidence scores) should be visible for experimentation; (ii) ML activities should enable children to exchange models for promoting reflection and pattern recognition; and (iii) the interface should allow quick data inspection (<i>e.g.</i> images vs. gestures).</p>","PeriodicalId":93494,"journal":{"name":"Proceedings. IEEE Symposium on Visual Languages and Human-Centric Computing","volume":"2021 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8783664/pdf/nihms-1752250.pdf","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Symposium on Visual Languages and Human-Centric Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/vl/hcc51201.2021.9576171","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/10/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Iteratively building and testing machine learning models can help children develop creativity, flexibility, and comfort with machine learning and artificial intelligence. We explore how children use machine teaching interfaces with a team of 14 children (aged 7-13 years) and adult co-designers. Children trained image classifiers and tested each other's models for robustness. Our study illuminates how children reason about ML concepts, offering these insights for designing machine teaching experiences for children: (i) ML metrics (e.g. confidence scores) should be visible for experimentation; (ii) ML activities should enable children to exchange models for promoting reflection and pattern recognition; and (iii) the interface should allow quick data inspection (e.g. images vs. gestures).

Abstract Image

Abstract Image

Abstract Image

探索儿童机器教学。
迭代地构建和测试机器学习模型可以帮助孩子们在机器学习和人工智能方面培养创造力、灵活性和舒适性。我们与14名儿童(7-13岁)和成人共同设计师一起探索儿童如何使用机器教学界面。孩子们训练图像分类器并测试彼此的模型的鲁棒性。我们的研究阐明了儿童如何对机器学习概念进行推理,为儿童设计机器教学体验提供了这些见解:(i)机器学习指标(例如置信度分数)应该在实验中可见;(ii)机器学习活动应使儿童能够交换模式,以促进思考和模式识别;(iii)界面应该允许快速数据检查(例如图像与手势)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信