Inferring Causation in Yeast Gene Association Networks With Kernel Logistic Regression.

IF 1.7 4区 生物学 Q4 EVOLUTIONARY BIOLOGY
Evolutionary Bioinformatics Pub Date : 2020-06-24 eCollection Date: 2020-01-01 DOI:10.1177/1176934320920310
Amira Al-Aamri, Kamal Taha, Maher Maalouf, Andrzej Kudlicki, Dirar Homouz
{"title":"Inferring Causation in Yeast Gene Association Networks With Kernel Logistic Regression.","authors":"Amira Al-Aamri,&nbsp;Kamal Taha,&nbsp;Maher Maalouf,&nbsp;Andrzej Kudlicki,&nbsp;Dirar Homouz","doi":"10.1177/1176934320920310","DOIUrl":null,"url":null,"abstract":"<p><p>Computational prediction of gene-gene associations is one of the productive directions in the study of bioinformatics. Many tools are developed to infer the relation between genes using different biological data sources. The association of a pair of genes deduced from the analysis of biological data becomes meaningful when it reflects the directionality and the type of reaction between genes. In this work, we follow another method to construct a causal gene co-expression network while identifying transcription factors in each pair of genes using microarray expression data. We adopt a machine learning technique based on a logistic regression model to tackle the sparsity of the network and to improve the quality of the prediction accuracy. The proposed system classifies each pair of genes into either connected or nonconnected class using the data of the correlation between these genes in the whole <i>Saccharomyces cerevisiae</i> genome. The accuracy of the classification model in predicting related genes was evaluated using several data sets for the yeast regulatory network. Our system achieves high performance in terms of several statistical measures.</p>","PeriodicalId":50472,"journal":{"name":"Evolutionary Bioinformatics","volume":"16 ","pages":"1176934320920310"},"PeriodicalIF":1.7000,"publicationDate":"2020-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1176934320920310","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1177/1176934320920310","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 3

Abstract

Computational prediction of gene-gene associations is one of the productive directions in the study of bioinformatics. Many tools are developed to infer the relation between genes using different biological data sources. The association of a pair of genes deduced from the analysis of biological data becomes meaningful when it reflects the directionality and the type of reaction between genes. In this work, we follow another method to construct a causal gene co-expression network while identifying transcription factors in each pair of genes using microarray expression data. We adopt a machine learning technique based on a logistic regression model to tackle the sparsity of the network and to improve the quality of the prediction accuracy. The proposed system classifies each pair of genes into either connected or nonconnected class using the data of the correlation between these genes in the whole Saccharomyces cerevisiae genome. The accuracy of the classification model in predicting related genes was evaluated using several data sets for the yeast regulatory network. Our system achieves high performance in terms of several statistical measures.

Abstract Image

Abstract Image

Abstract Image

用核逻辑回归推断酵母基因关联网络的因果关系。
基因间关联的计算预测是生物信息学研究的重要方向之一。利用不同的生物数据来源,人们开发了许多工具来推断基因之间的关系。从生物学数据分析中推断出的一对基因的关联,只有在反映出基因间反应的方向性和类型时才有意义。在这项工作中,我们采用另一种方法构建因果基因共表达网络,同时使用微阵列表达数据识别每对基因中的转录因子。我们采用基于逻辑回归模型的机器学习技术来解决网络的稀疏性,提高预测精度的质量。该系统利用整个酿酒酵母基因组中这些基因之间的相关性数据,将每对基因分为连接类或非连接类。使用酵母调控网络的几个数据集评估了分类模型在预测相关基因方面的准确性。我们的系统在几个统计指标方面实现了高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Evolutionary Bioinformatics
Evolutionary Bioinformatics 生物-进化生物学
CiteScore
4.20
自引率
0.00%
发文量
25
审稿时长
12 months
期刊介绍: Evolutionary Bioinformatics is an open access, peer reviewed international journal focusing on evolutionary bioinformatics. The journal aims to support understanding of organismal form and function through use of molecular, genetic, genomic and proteomic data by giving due consideration to its evolutionary context.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信