Xiongliang Zhang;Shiqi Zheng;Choon Ki Ahn;Yuanlong Xie
{"title":"Adaptive Neural Consensus for Fractional-Order Multi-Agent Systems With Faults and Delays","authors":"Xiongliang Zhang;Shiqi Zheng;Choon Ki Ahn;Yuanlong Xie","doi":"10.1109/TNNLS.2022.3146889","DOIUrl":null,"url":null,"abstract":"This article investigates the consensus control for a class of fractional-order (FO) nonlinear multi-agent systems (MASs). Severe sensor/actuator faults and time-varying delays are both considered in the FO MASs. The severe faults may cause unknown control directions in MASs. A new adaptive controller, which is composed of a distributed FO Nussbaum gain, an FO filter, and an auxiliary function, is presented to deal with the severe faults. To cope with the time-varying delays, two different methods are proposed based on barrier Lyapunov function and Lyapunov–Krasovskii function, respectively. Meanwhile, the radial basis function neural network (RBF NN) is applied to approximate the unknown nonlinear functions during the design procedures. This can result in a low-complexity controller. Finally, two simulation examples are used to verify the validity of the proposed schemes.","PeriodicalId":13303,"journal":{"name":"IEEE transactions on neural networks and learning systems","volume":"34 10","pages":"7873-7886"},"PeriodicalIF":10.2000,"publicationDate":"2022-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on neural networks and learning systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9712859/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 7
Abstract
This article investigates the consensus control for a class of fractional-order (FO) nonlinear multi-agent systems (MASs). Severe sensor/actuator faults and time-varying delays are both considered in the FO MASs. The severe faults may cause unknown control directions in MASs. A new adaptive controller, which is composed of a distributed FO Nussbaum gain, an FO filter, and an auxiliary function, is presented to deal with the severe faults. To cope with the time-varying delays, two different methods are proposed based on barrier Lyapunov function and Lyapunov–Krasovskii function, respectively. Meanwhile, the radial basis function neural network (RBF NN) is applied to approximate the unknown nonlinear functions during the design procedures. This can result in a low-complexity controller. Finally, two simulation examples are used to verify the validity of the proposed schemes.
期刊介绍:
The focus of IEEE Transactions on Neural Networks and Learning Systems is to present scholarly articles discussing the theory, design, and applications of neural networks as well as other learning systems. The journal primarily highlights technical and scientific research in this domain.