Exception Sets of Intrinsic and Piecewise Lipschitz Functions.

IF 1.2 2区 数学 Q1 MATHEMATICS
Journal of Geometric Analysis Pub Date : 2022-01-01 Epub Date: 2022-02-01 DOI:10.1007/s12220-021-00860-5
Gunther Leobacher, Alexander Steinicke
{"title":"Exception Sets of Intrinsic and Piecewise Lipschitz Functions.","authors":"Gunther Leobacher, Alexander Steinicke","doi":"10.1007/s12220-021-00860-5","DOIUrl":null,"url":null,"abstract":"<p><p>We consider a class of functions defined on metric spaces which generalizes the concept of piecewise Lipschitz continuous functions on an interval or on polyhedral structures. The study of such functions requires the investigation of their exception sets where the Lipschitz property fails. The newly introduced notion of permeability describes sets which are natural exceptions for Lipschitz continuity in a well-defined sense. One of the main results states that continuous functions which are intrinsically Lipschitz continuous outside a permeable set are Lipschitz continuous on the whole domain with respect to the intrinsic metric. We provide examples of permeable sets in <math> <msup><mrow><mi>R</mi></mrow> <mi>d</mi></msup> </math> , which include Lipschitz submanifolds.</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"32 4","pages":"118"},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8807473/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-021-00860-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a class of functions defined on metric spaces which generalizes the concept of piecewise Lipschitz continuous functions on an interval or on polyhedral structures. The study of such functions requires the investigation of their exception sets where the Lipschitz property fails. The newly introduced notion of permeability describes sets which are natural exceptions for Lipschitz continuity in a well-defined sense. One of the main results states that continuous functions which are intrinsically Lipschitz continuous outside a permeable set are Lipschitz continuous on the whole domain with respect to the intrinsic metric. We provide examples of permeable sets in R d , which include Lipschitz submanifolds.

本征函数和片状 Lipschitz 函数的例外集。
我们考虑的是一类定义在度量空间上的函数,它概括了区间上或多面体结构上的片状 Lipschitz 连续函数的概念。要研究这类函数,就必须研究它们的例外集,在这些例外集中,利普希兹特性失效。新引入的渗透性概念描述了在明确定义的意义上作为利普齐兹连续性自然例外的集合。其中一个主要结果表明,在渗透集外本质上是利普齐兹连续的连续函数,在整个域上相对于内在度量也是利普齐兹连续的。我们举例说明了 R d 中的可渗透集,其中包括 Lipschitz 子线面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
9.10%
发文量
290
审稿时长
3 months
期刊介绍: JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信