The Potential For Bias In Machine Learning And Opportunities For Health Insurers To Address It.

Stephanie S Gervasi, Irene Y Chen, Aaron Smith-McLallen, David Sontag, Ziad Obermeyer, Michael Vennera, Ravi Chawla
{"title":"The Potential For Bias In Machine Learning And Opportunities For Health Insurers To Address It.","authors":"Stephanie S Gervasi,&nbsp;Irene Y Chen,&nbsp;Aaron Smith-McLallen,&nbsp;David Sontag,&nbsp;Ziad Obermeyer,&nbsp;Michael Vennera,&nbsp;Ravi Chawla","doi":"10.1377/hlthaff.2021.01287","DOIUrl":null,"url":null,"abstract":"<p><p>As the use of machine learning algorithms in health care continues to expand, there are growing concerns about equity, fairness, and bias in the ways in which machine learning models are developed and used in clinical and business decisions. We present a guide to the data ecosystem used by health insurers to highlight where bias can arise along machine learning pipelines. We suggest mechanisms for identifying and dealing with bias and discuss challenges and opportunities to increase fairness through analytics in the health insurance industry.</p>","PeriodicalId":300542,"journal":{"name":"Health affairs (Project Hope)","volume":" ","pages":"212-218"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health affairs (Project Hope)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1377/hlthaff.2021.01287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

As the use of machine learning algorithms in health care continues to expand, there are growing concerns about equity, fairness, and bias in the ways in which machine learning models are developed and used in clinical and business decisions. We present a guide to the data ecosystem used by health insurers to highlight where bias can arise along machine learning pipelines. We suggest mechanisms for identifying and dealing with bias and discuss challenges and opportunities to increase fairness through analytics in the health insurance industry.

机器学习中潜在的偏见以及医疗保险公司解决这一问题的机会。
随着机器学习算法在医疗保健领域的应用不断扩大,人们越来越关注机器学习模型在临床和商业决策中开发和使用的公平、公平和偏见。我们提供了一份健康保险公司使用的数据生态系统指南,以突出机器学习管道中可能出现偏见的地方。我们建议识别和处理偏见的机制,并讨论通过分析在健康保险行业增加公平性的挑战和机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信