{"title":"Effects of alternating heat and cold stimulation using a wearable thermo-device on subjective and objective shoulder stiffness.","authors":"Tomonori Sawada, Hiroki Okawara, Daisuke Nakashima, Shuhei Iwabuchi, Morio Matsumoto, Masaya Nakamura, Takeo Nagura","doi":"10.1186/s40101-021-00275-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Technological innovations have allowed the use of miniature apparatus that can easily control and program heat and cold stimulations using Peltier elements. The wearable thermo-device has a potential to be applied to conventional contrast bath therapy. This study aimed to examine the effects of alternating heat and cold stimulation (HC) using a wearable thermo-device on subjective and objective improvement of shoulder stiffness.</p><p><strong>Methods: </strong>Twenty healthy young male individuals (20.3 ± 0.6 years) participated in this study. The interventions were randomly conducted under four conditions, including HC, heat stimulation, cold stimulation, and no stimulation on their bilateral trapezius muscle, after a 30-min typing task. Each intervention was administered at least 1 week apart. The analyzed limb was the dominant arm. Muscle hardness was assessed using a portable muscle hardness meter, as well as the skin temperature over the stimulated area. After each condition, the participants were asked for feedback regarding subjective improvement in refreshed feelings, muscle stiffness, and muscle fatigue using an 11-point numerical rating scale.</p><p><strong>Results: </strong>With regard to muscle hardness, only the HC condition significantly decreased from 1.43 N to 1.37 N (d = 0.44, p < 0.05). Additionally, reduced muscle hardness in HC condition was associated with the degree of skin cooling during the intervention (cold max: r = 0.634, p < 0.01; cold change: r = -0.548, p < 0.05). Subjective improvement in refreshed feelings, muscle stiffness, and muscle fatigue was determined in the HC and heat stimulation conditions compared with the no stimulation condition (p < 0.01 and p < 0.05, respectively). Moreover, the HC condition showed significantly greater improvements in muscle stiffness and fatigue compared to the cold stimulation condition (p < 0.05).</p><p><strong>Conclusions: </strong>The current study demonstrated that HC promoted not only better subjective symptoms, such as muscle stiffness and fatigue, but also lesser muscle hardness. Furthermore, an association was observed between the degree of skin temperature cooling and reduced muscle hardness during HC. Further investigations on the ratio and intensity of cooling should be conducted in the future to establish the optimal HC protocol for muscle stiffness or fatigue.</p><p><strong>Trial registration: </strong>UMIN000040620 . Registered 1 June 2020.</p>","PeriodicalId":16768,"journal":{"name":"Journal of Physiological Anthropology","volume":" ","pages":"1"},"PeriodicalIF":3.1000,"publicationDate":"2022-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8722412/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiological Anthropology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40101-021-00275-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 4
Abstract
Background: Technological innovations have allowed the use of miniature apparatus that can easily control and program heat and cold stimulations using Peltier elements. The wearable thermo-device has a potential to be applied to conventional contrast bath therapy. This study aimed to examine the effects of alternating heat and cold stimulation (HC) using a wearable thermo-device on subjective and objective improvement of shoulder stiffness.
Methods: Twenty healthy young male individuals (20.3 ± 0.6 years) participated in this study. The interventions were randomly conducted under four conditions, including HC, heat stimulation, cold stimulation, and no stimulation on their bilateral trapezius muscle, after a 30-min typing task. Each intervention was administered at least 1 week apart. The analyzed limb was the dominant arm. Muscle hardness was assessed using a portable muscle hardness meter, as well as the skin temperature over the stimulated area. After each condition, the participants were asked for feedback regarding subjective improvement in refreshed feelings, muscle stiffness, and muscle fatigue using an 11-point numerical rating scale.
Results: With regard to muscle hardness, only the HC condition significantly decreased from 1.43 N to 1.37 N (d = 0.44, p < 0.05). Additionally, reduced muscle hardness in HC condition was associated with the degree of skin cooling during the intervention (cold max: r = 0.634, p < 0.01; cold change: r = -0.548, p < 0.05). Subjective improvement in refreshed feelings, muscle stiffness, and muscle fatigue was determined in the HC and heat stimulation conditions compared with the no stimulation condition (p < 0.01 and p < 0.05, respectively). Moreover, the HC condition showed significantly greater improvements in muscle stiffness and fatigue compared to the cold stimulation condition (p < 0.05).
Conclusions: The current study demonstrated that HC promoted not only better subjective symptoms, such as muscle stiffness and fatigue, but also lesser muscle hardness. Furthermore, an association was observed between the degree of skin temperature cooling and reduced muscle hardness during HC. Further investigations on the ratio and intensity of cooling should be conducted in the future to establish the optimal HC protocol for muscle stiffness or fatigue.
Trial registration: UMIN000040620 . Registered 1 June 2020.
期刊介绍:
Journal of Physiological Anthropology (JPA) is an open access, peer-reviewed journal that publishes research on the physiological functions of modern mankind, with an emphasis on the physical and bio-cultural effects on human adaptability to the current environment.
The objective of JPA is to evaluate physiological adaptations to modern living environments, and to publish research from different scientific fields concerned with environmental impact on human life.
Topic areas include, but are not limited to:
environmental physiology
bio-cultural environment
living environment
epigenetic adaptation
development and growth
age and sex differences
nutrition and morphology
physical fitness and health
Journal of Physiological Anthropology is the official journal of the Japan Society of Physiological Anthropology.