Read, spot and translate.

IF 2.1 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
MACHINE TRANSLATION Pub Date : 2021-01-01 Epub Date: 2021-04-04 DOI:10.1007/s10590-021-09259-z
Lucia Specia, Josiah Wang, Sun Jae Lee, Alissa Ostapenko, Pranava Madhyastha
{"title":"Read, spot and translate.","authors":"Lucia Specia,&nbsp;Josiah Wang,&nbsp;Sun Jae Lee,&nbsp;Alissa Ostapenko,&nbsp;Pranava Madhyastha","doi":"10.1007/s10590-021-09259-z","DOIUrl":null,"url":null,"abstract":"<p><p>We propose multimodal machine translation (MMT) approaches that exploit the correspondences between words and image regions. In contrast to existing work, our referential grounding method considers <i>objects</i> as the visual unit for grounding, rather than whole images or abstract image regions, and performs visual grounding in the <i>source</i> language, rather than at the decoding stage via attention. We explore two referential grounding approaches: (i) implicit grounding, where the model jointly learns how to ground the source language in the visual representation and to translate; and (ii) explicit grounding, where grounding is performed independent of the translation model, and is subsequently used to guide machine translation. We performed experiments on the Multi30K dataset for three language pairs: English-German, English-French and English-Czech. Our referential grounding models outperform existing MMT models according to automatic and human evaluation metrics.</p>","PeriodicalId":44400,"journal":{"name":"MACHINE TRANSLATION","volume":"35 2","pages":"145-165"},"PeriodicalIF":2.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10590-021-09259-z","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MACHINE TRANSLATION","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10590-021-09259-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/4/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

Abstract

We propose multimodal machine translation (MMT) approaches that exploit the correspondences between words and image regions. In contrast to existing work, our referential grounding method considers objects as the visual unit for grounding, rather than whole images or abstract image regions, and performs visual grounding in the source language, rather than at the decoding stage via attention. We explore two referential grounding approaches: (i) implicit grounding, where the model jointly learns how to ground the source language in the visual representation and to translate; and (ii) explicit grounding, where grounding is performed independent of the translation model, and is subsequently used to guide machine translation. We performed experiments on the Multi30K dataset for three language pairs: English-German, English-French and English-Czech. Our referential grounding models outperform existing MMT models according to automatic and human evaluation metrics.

Abstract Image

Abstract Image

Abstract Image

阅读,发现并翻译。
我们提出了多模态机器翻译(MMT)方法,利用单词和图像区域之间的对应关系。与现有工作相比,我们的参照接地方法将物体作为接地的视觉单元,而不是将整个图像或抽象图像区域作为接地单元,并且在源语言中进行视觉接地,而不是在解码阶段通过注意进行视觉接地。我们探索了两种参照基础方法:(i)隐式基础,即模型共同学习如何在视觉表征中建立源语言并进行翻译;(ii)显式接地,其中接地与翻译模型无关,随后用于指导机器翻译。我们在Multi30K数据集上进行了三种语言对的实验:英语-德语、英语-法语和英语-捷克语。根据自动和人工评估指标,我们的参考接地模型优于现有的MMT模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
MACHINE TRANSLATION
MACHINE TRANSLATION COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
自引率
5.30%
发文量
1
期刊介绍: Machine Translation covers all branches of computational linguistics and language engineering, wherever they incorporate a multilingual aspect. It features papers that cover the theoretical, descriptive or computational aspects of any of the following topics: •machine translation and machine-aided translation •human translation theory and practice •multilingual text composition and generation •multilingual information retrieval •multilingual natural language interfaces •multilingual dialogue systems •multilingual message understanding systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信