{"title":"Mutational screening of <i>AGRN</i>, <i>SLC39A5</i>, <i>SCO2</i>, <i>P4HA2, BSG</i>, <i>ZNF644</i>, and <i>CPSF1</i> in a Chinese cohort of 103 patients with nonsyndromic high myopia.","authors":"Yi-Han Zheng, Xue-Bi Cai, Lu-Qi Xia, Fang-Yue Zhou, Xin-Ran Wen, De-Fu Chen, Fang Han, Kai-Jing Zhou, Zi-Bing Jin, Wen-Juan Zhuang, Bing Lin","doi":"","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>High myopia (HM) is one of the leading causes of irreversible vision loss in the world. Many myopia loci have been uncovered with linkage analysis, genome-wide association studies, and sequencing analysis. Numerous pathogenic genes within these loci have been detected in a portion of HM cases. In the present study, we aimed to investigate the genetic basis of 103 patients with nonsyndromic HM, focusing on the reported causal genes.</p><p><strong>Methods: </strong>A total of 103 affected individuals with nonsyndromic HM were recruited, including 101 patients with unrelated sporadic HM and a mother and son pair. All participants underwent comprehensive ophthalmic examinations, and genomic DNA samples were extracted from the peripheral blood. Whole exome sequencing was performed on the mother and son pair as well as on the unaffected father. Sanger sequencing was used to identify mutations in the remaining 101 patients. Bioinformatics analysis was subsequently applied to verify the mutations.</p><p><strong>Results: </strong>An extremely rare mutation in <i>AGRN</i> (c.2627A>T, p.K876M) was identified in the mother and son pair but not in the unaffected father. Another two mutations in <i>AGRN</i> (c.4787C>T, p.P1596L/c.5056G>A, p.G1686S) were identified in two unrelated patients. A total of eight heterozygous variants potentially affecting the protein function were detected in eight of the remaining 99 patients, including c.1350delC, p.V451Cfs*76 and c.1023_1024insA, p.P342Tfs*41 in <i>SLC39A5</i>; c.244_246delAAG, p.K82del in <i>SCO2</i>; c.545A>G, p.Y182C in <i>P4HA2</i>; c.415C>T, p.P139S in <i>BSG</i>; c.3266A>G, p.Y1089C in <i>ZNF644</i>; and c.2252C>T, p.S751L and c.1708C>T, p.R570C in <i>CPSF1</i>. Multiple bioinformatics analyses were conducted, and a comparison to a group with geographically matched controls was performed, which supported the potential pathogenicity of these variants.</p><p><strong>Conclusions: </strong>We provide further evidence for the potential role of <i>AGRN</i> in HM inheritance and enlarged the current genetic spectrum of nonsyndromic HM by comprehensively screening the reported causal genes.</p>","PeriodicalId":18866,"journal":{"name":"Molecular Vision","volume":"27 ","pages":"706-717"},"PeriodicalIF":1.8000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/7f/d0/mv-v27-706.PMC8684808.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Vision","FirstCategoryId":"3","ListUrlMain":"","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: High myopia (HM) is one of the leading causes of irreversible vision loss in the world. Many myopia loci have been uncovered with linkage analysis, genome-wide association studies, and sequencing analysis. Numerous pathogenic genes within these loci have been detected in a portion of HM cases. In the present study, we aimed to investigate the genetic basis of 103 patients with nonsyndromic HM, focusing on the reported causal genes.
Methods: A total of 103 affected individuals with nonsyndromic HM were recruited, including 101 patients with unrelated sporadic HM and a mother and son pair. All participants underwent comprehensive ophthalmic examinations, and genomic DNA samples were extracted from the peripheral blood. Whole exome sequencing was performed on the mother and son pair as well as on the unaffected father. Sanger sequencing was used to identify mutations in the remaining 101 patients. Bioinformatics analysis was subsequently applied to verify the mutations.
Results: An extremely rare mutation in AGRN (c.2627A>T, p.K876M) was identified in the mother and son pair but not in the unaffected father. Another two mutations in AGRN (c.4787C>T, p.P1596L/c.5056G>A, p.G1686S) were identified in two unrelated patients. A total of eight heterozygous variants potentially affecting the protein function were detected in eight of the remaining 99 patients, including c.1350delC, p.V451Cfs*76 and c.1023_1024insA, p.P342Tfs*41 in SLC39A5; c.244_246delAAG, p.K82del in SCO2; c.545A>G, p.Y182C in P4HA2; c.415C>T, p.P139S in BSG; c.3266A>G, p.Y1089C in ZNF644; and c.2252C>T, p.S751L and c.1708C>T, p.R570C in CPSF1. Multiple bioinformatics analyses were conducted, and a comparison to a group with geographically matched controls was performed, which supported the potential pathogenicity of these variants.
Conclusions: We provide further evidence for the potential role of AGRN in HM inheritance and enlarged the current genetic spectrum of nonsyndromic HM by comprehensively screening the reported causal genes.
期刊介绍:
Molecular Vision is a peer-reviewed journal dedicated to the dissemination of research results in molecular biology, cell biology, and the genetics of the visual system (ocular and cortical).
Molecular Vision publishes articles presenting original research that has not previously been published and comprehensive articles reviewing the current status of a particular field or topic. Submissions to Molecular Vision are subjected to rigorous peer review. Molecular Vision does NOT publish preprints.
For authors, Molecular Vision provides a rapid means of communicating important results. Access to Molecular Vision is free and unrestricted, allowing the widest possible audience for your article. Digital publishing allows you to use color images freely (and without fees). Additionally, you may publish animations, sounds, or other supplementary information that clarifies or supports your article. Each of the authors of an article may also list an electronic mail address (which will be updated upon request) to give interested readers easy access to authors.