Hermitian-Yang-Mills Connections on Collapsing Elliptically Fibered K3 Surfaces.

IF 1.2 2区 数学 Q1 MATHEMATICS
Journal of Geometric Analysis Pub Date : 2022-01-01 Epub Date: 2022-01-07 DOI:10.1007/s12220-021-00808-9
Ved Datar, Adam Jacob
{"title":"Hermitian-Yang-Mills Connections on Collapsing Elliptically Fibered <i>K</i>3 Surfaces.","authors":"Ved Datar,&nbsp;Adam Jacob","doi":"10.1007/s12220-021-00808-9","DOIUrl":null,"url":null,"abstract":"<p><p>Let <math><mrow><mi>X</mi> <mo>→</mo> <msup><mrow><mi>P</mi></mrow> <mn>1</mn></msup> </mrow> </math> be an elliptically fibered <i>K</i>3 surface, admitting a sequence <math><msub><mi>ω</mi> <mi>i</mi></msub> </math> of Ricci-flat metrics collapsing the fibers. Let <i>V</i> be a holomorphic <i>SU</i>(<i>n</i>) bundle over <i>X</i>, stable with respect to <math><msub><mi>ω</mi> <mi>i</mi></msub> </math> . Given the corresponding sequence <math><msub><mi>Ξ</mi> <mi>i</mi></msub> </math> of Hermitian-Yang-Mills connections on <i>V</i>, we prove that, if <i>E</i> is a generic fiber, the restricted sequence <math> <mrow><msub><mi>Ξ</mi> <mi>i</mi></msub> <msub><mrow><mo>|</mo></mrow> <mi>E</mi></msub> </mrow> </math> converges to a flat connection <math><msub><mi>A</mi> <mn>0</mn></msub> </math> . Furthermore, if the restriction <math> <msub><mrow><mi>V</mi> <mo>|</mo></mrow> <mi>E</mi></msub> </math> is of the form <math> <mrow><msubsup><mo>⊕</mo> <mrow><mi>j</mi> <mo>=</mo> <mn>1</mn></mrow> <mi>n</mi></msubsup> <msub><mi>O</mi> <mi>E</mi></msub> <mrow><mo>(</mo> <msub><mi>q</mi> <mi>j</mi></msub> <mo>-</mo> <mn>0</mn> <mo>)</mo></mrow> </mrow> </math> for <i>n</i> distinct points <math> <mrow><msub><mi>q</mi> <mi>j</mi></msub> <mo>∈</mo> <mi>E</mi></mrow> </math> , then these points uniquely determine <math><msub><mi>A</mi> <mn>0</mn></msub> </math> .</p>","PeriodicalId":56121,"journal":{"name":"Journal of Geometric Analysis","volume":"32 2","pages":"69"},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8741718/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12220-021-00808-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Let X P 1 be an elliptically fibered K3 surface, admitting a sequence ω i of Ricci-flat metrics collapsing the fibers. Let V be a holomorphic SU(n) bundle over X, stable with respect to ω i . Given the corresponding sequence Ξ i of Hermitian-Yang-Mills connections on V, we prove that, if E is a generic fiber, the restricted sequence Ξ i | E converges to a flat connection A 0 . Furthermore, if the restriction V | E is of the form j = 1 n O E ( q j - 0 ) for n distinct points q j E , then these points uniquely determine A 0 .

塌缩椭圆纤维K3曲面上的Hermitian-Yang-Mills连接。
设X→p1是一个椭圆纤维的K3曲面,允许一个序列ω i的ricci平面度量使纤维坍缩。设V是X上的全纯SU(n)束,对ω i稳定。给定V上的Hermitian-Yang-Mills连接的对应序列Ξ i,证明了当E是一般光纤时,限制序列Ξ i | E收敛于平面连接a 0。更进一步,如果约束V | E的形式为⊕j = 1n O E (q j - 0)对于n个不同的点q j∈E,则这些点唯一地决定了A 0。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
9.10%
发文量
290
审稿时长
3 months
期刊介绍: JGA publishes both research and high-level expository papers in geometric analysis and its applications. There are no restrictions on page length.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信