ON THE PRIVACY AND UTILITY PROPERTIES OF TRIPLE MATRIX-MASKING.

Q2 Mathematics
A Adam Ding, Guanhong Miao, Samuel S Wu
{"title":"ON THE PRIVACY AND UTILITY PROPERTIES OF TRIPLE MATRIX-MASKING.","authors":"A Adam Ding,&nbsp;Guanhong Miao,&nbsp;Samuel S Wu","doi":"10.29012/jpc.674","DOIUrl":null,"url":null,"abstract":"<p><p>Privacy protection is an important requirement in many statistical studies. A recently proposed data collection method, triple matrix-masking, retains exact summary statistics without exposing the raw data at any point in the process. In this paper, we provide theoretical formulation and proofs showing that a modified version of the procedure is strong collection obfuscating: no party in the data collection process is able to gain knowledge of the individual level data, even with some partially masked data information in addition to the publicly published data. This provides a theoretical foundation for the usage of such a procedure to collect masked data that allows exact statistical inference for linear models, while preserving a well-defined notion of privacy protection for each individual participant in the study. This paper fits into a line of work tackling the problem of how to create useful synthetic data without having a trustworthy data aggregator. We achieve this by splitting the trust between two parties, the \"masking service provider\" and the \"data collector.\"</p>","PeriodicalId":52360,"journal":{"name":"Journal of Privacy and Confidentiality","volume":"10 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8580375/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Privacy and Confidentiality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29012/jpc.674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

Abstract

Privacy protection is an important requirement in many statistical studies. A recently proposed data collection method, triple matrix-masking, retains exact summary statistics without exposing the raw data at any point in the process. In this paper, we provide theoretical formulation and proofs showing that a modified version of the procedure is strong collection obfuscating: no party in the data collection process is able to gain knowledge of the individual level data, even with some partially masked data information in addition to the publicly published data. This provides a theoretical foundation for the usage of such a procedure to collect masked data that allows exact statistical inference for linear models, while preserving a well-defined notion of privacy protection for each individual participant in the study. This paper fits into a line of work tackling the problem of how to create useful synthetic data without having a trustworthy data aggregator. We achieve this by splitting the trust between two parties, the "masking service provider" and the "data collector."

Abstract Image

关于三重矩阵掩码的私密性和效用性质。
隐私保护是许多统计研究的重要要求。最近提出的一种数据收集方法,三重矩阵屏蔽,保留精确的汇总统计数据,而不会在过程中的任何一点暴露原始数据。在本文中,我们提供了理论公式和证明,表明该过程的修改版本是强集合混淆的:数据收集过程中的任何一方都无法获得个人层面数据的知识,即使除了公开发布的数据之外,还有一些部分被掩盖的数据信息。这为使用这样的程序来收集屏蔽数据提供了理论基础,这些数据允许对线性模型进行精确的统计推断,同时为研究中的每个个体参与者保留了一个定义良好的隐私保护概念。本文适合解决如何在没有可靠的数据聚合器的情况下创建有用的合成数据的问题。我们通过在两方(“屏蔽服务提供者”和“数据收集器”)之间分离信任来实现这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Privacy and Confidentiality
Journal of Privacy and Confidentiality Computer Science-Computer Science (miscellaneous)
CiteScore
3.10
自引率
0.00%
发文量
11
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信