Simulating Large-scale Models of Brain Neuronal Circuits using Google Cloud Platform.

Subhashini Sivagnanam, Wyatt Gorman, Donald Doherty, Samuel A Neymotin, Stephan Fang, Hermine Hovhannisyan, William W Lytton, Salvador Dura-Bernal
{"title":"Simulating Large-scale Models of Brain Neuronal Circuits using Google Cloud Platform.","authors":"Subhashini Sivagnanam,&nbsp;Wyatt Gorman,&nbsp;Donald Doherty,&nbsp;Samuel A Neymotin,&nbsp;Stephan Fang,&nbsp;Hermine Hovhannisyan,&nbsp;William W Lytton,&nbsp;Salvador Dura-Bernal","doi":"10.1145/3311790.3399621","DOIUrl":null,"url":null,"abstract":"<p><p>Biophysically detailed modeling provides an unmatched method to integrate data from many disparate experimental studies, and manipulate and explore with high precision the resultin brain circuit simulation. We developed a detailed model of the brain motor cortex circuits, simulating over 10,000 biophysically detailed neurons and 30 million synaptic connections. Optimization and evaluation of the cortical model parameters and responses was achieved via parameter exploration using grid search parameter sweeps and evolutionary algorithms. This involves running tens of thousands of simulations requiring significant computational resources. This paper describes our experience in setting up and using Google Compute Platform (GCP) with Slurm to run these large-scale simulations. We describe the best practices and solutions to the issues that arose during the process, and present preliminary results from running simulations on GCP.</p>","PeriodicalId":74406,"journal":{"name":"PEARC20 : Practice and Experience in Advanced Research Computing 2020 : Catch the wave : July 27-31, 2020, Portland, Or Virtual Conference. Practice and Experience in Advanced Research Computing (Conference) (2020 : Online)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3311790.3399621","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PEARC20 : Practice and Experience in Advanced Research Computing 2020 : Catch the wave : July 27-31, 2020, Portland, Or Virtual Conference. Practice and Experience in Advanced Research Computing (Conference) (2020 : Online)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3311790.3399621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Biophysically detailed modeling provides an unmatched method to integrate data from many disparate experimental studies, and manipulate and explore with high precision the resultin brain circuit simulation. We developed a detailed model of the brain motor cortex circuits, simulating over 10,000 biophysically detailed neurons and 30 million synaptic connections. Optimization and evaluation of the cortical model parameters and responses was achieved via parameter exploration using grid search parameter sweeps and evolutionary algorithms. This involves running tens of thousands of simulations requiring significant computational resources. This paper describes our experience in setting up and using Google Compute Platform (GCP) with Slurm to run these large-scale simulations. We describe the best practices and solutions to the issues that arose during the process, and present preliminary results from running simulations on GCP.

利用谷歌云平台模拟大脑神经元回路的大规模模型。
生物物理详细建模提供了一种无与伦比的方法来整合来自许多不同实验研究的数据,并以高精度操作和探索结果脑回路模拟。我们开发了一个大脑运动皮层回路的详细模型,模拟了超过10,000个生物物理上详细的神经元和3000万个突触连接。通过使用网格搜索、参数扫描和进化算法进行参数探索,实现了皮质模型参数和响应的优化和评估。这需要运行数以万计的模拟,需要大量的计算资源。本文介绍了我们建立和使用Google Compute Platform (GCP)和Slurm来运行这些大规模模拟的经验。我们描述了在此过程中出现的问题的最佳实践和解决方案,并介绍了在GCP上运行模拟的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信