Ibrahim Marai, David Carasso, Shaqed Carasso, Shemy Carasso
{"title":"The Mechanical Cost of Decreasing Conduction Velocity: A Mathematical Model of Pacing-Induced Lower Strain.","authors":"Ibrahim Marai, David Carasso, Shaqed Carasso, Shemy Carasso","doi":"10.4022/jafib.20200444","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To simulate the effect of decreasing conduction velocity (Cvel) on average segmental myocardial strain using mathematical modeling.</p><p><strong>Methods: </strong>The simulation was run using MatLab version 7.4 (The MathWorks, Inc. Natick, Massachusetts). A normal strain-time curve pattern was sampled from a normal human echo study using the 2D strain imaging software (GE Healthcare, Milwaukee, Wisconsin). Contraction was simulated from simultaneous segmental activation (Cvel=∞) through normal activation (Cvel=400cm/sec) to pacing Cvel (100 to 10cm/sec). The simulation generated average segmental strain-time waveforms for each velocity and peak strain as a function of Cvel and time to peak strain as a function of Cvel curves.</p><p><strong>Results: </strong>With decreasing Cvel, average peak segmental strain was found to be decreased and delayed. The following correlation equation represents the correlation betweenpeak strain and Cvel : strain= -20.12+27.65 x e (-0.29 x Cvel). At the highest pacing Cvel (100cm/sec) average peak segmental strain dropped by 10%, at 50cm/sec by 30% and at the lowest pacing Cvel (10cm/sec) peak strain dropped by >90%. Time to peak segmental strain was minimally longer with decreasing Cvel down to 70cm/sec (pacing velocity range). Further decreased velocity dramatically increased time to peak strain of the simulated segment.</p><p><strong>Conclusions: </strong>The simulation yielded a predictive correlation between slower conduction velocities and decreased and delayed segmental strain.</p>","PeriodicalId":15072,"journal":{"name":"Journal of atrial fibrillation","volume":"14 1","pages":"20200444"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8691326/pdf/jafib-14-20200444.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of atrial fibrillation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4022/jafib.20200444","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To simulate the effect of decreasing conduction velocity (Cvel) on average segmental myocardial strain using mathematical modeling.
Methods: The simulation was run using MatLab version 7.4 (The MathWorks, Inc. Natick, Massachusetts). A normal strain-time curve pattern was sampled from a normal human echo study using the 2D strain imaging software (GE Healthcare, Milwaukee, Wisconsin). Contraction was simulated from simultaneous segmental activation (Cvel=∞) through normal activation (Cvel=400cm/sec) to pacing Cvel (100 to 10cm/sec). The simulation generated average segmental strain-time waveforms for each velocity and peak strain as a function of Cvel and time to peak strain as a function of Cvel curves.
Results: With decreasing Cvel, average peak segmental strain was found to be decreased and delayed. The following correlation equation represents the correlation betweenpeak strain and Cvel : strain= -20.12+27.65 x e (-0.29 x Cvel). At the highest pacing Cvel (100cm/sec) average peak segmental strain dropped by 10%, at 50cm/sec by 30% and at the lowest pacing Cvel (10cm/sec) peak strain dropped by >90%. Time to peak segmental strain was minimally longer with decreasing Cvel down to 70cm/sec (pacing velocity range). Further decreased velocity dramatically increased time to peak strain of the simulated segment.
Conclusions: The simulation yielded a predictive correlation between slower conduction velocities and decreased and delayed segmental strain.