{"title":"LncRNAs PSMG3-AS1 and MEG3 negatively regulate each other to participate in endometrial carcinoma cell proliferation.","authors":"Shuai Huang, Jiankun Chen, Xuexiao Gao, Zhiyuan Shang, Xiao Ma, Xia Zhang, Jiayang Li, Ruoyun Yin, Xiaojing Meng","doi":"10.1007/s00335-021-09931-y","DOIUrl":null,"url":null,"abstract":"<p><p>Endometrial carcinoma (EC), also known as corpus cancer or corpus uterine cancer, is the most frequently diagnosed genital cancer among women in developed countries. Our preliminary RNA-seq analysis revealed the inverse correlation between the expression of PSMG3-AS1 and MEG3 across EC tissues, indicating the possible interaction between them. This study aimed to explore the interaction between two long non-coding RNAs (lncRNAs) PSMG3-AS1 and MEG3 in EC. Investigation of the interaction between two lncRNAs in cancer biology is a novel topic. The expression of PSMG3-AS1 and MEG3 in EC and paired non-tumor tissues from 60 EC patients were determined by RT-qPCR. Correlations between them were analyzed by Pearson's correlation coefficient. PSMG3-AS1 and MEG3 were overexpressed in EC cells to study the relationship between them. The roles of PSMG3-AS1 and MEG3 in regulating the proliferation of EC cells were assessed by CCK-8 assay. PSMG3-AS1 was upregulated, while MEG3 was downregulated in EC. Across EC tissues, the expression of PSMG3-AS1 and MEG3 were inversely correlated. In EC cells, overexpression of PSMG3-AS1 and MEG3 resulted in the downregulation of each other. In cell proliferation assay, PSMG3-AS1 promoted cell proliferation, and MEG3 inhibited cell proliferation. Moreover, the proliferation rate of cells co-transfected with PSMG3-AS1 and MEG3 expression vectors was not different from that in cells without transfections. In conclusion, PSMG3-AS1 and MEG3 may negatively regulate each other to regulate EC cell proliferation.</p>","PeriodicalId":412165,"journal":{"name":"Mammalian genome : official journal of the International Mammalian Genome Society","volume":" ","pages":"502-507"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mammalian genome : official journal of the International Mammalian Genome Society","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00335-021-09931-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Endometrial carcinoma (EC), also known as corpus cancer or corpus uterine cancer, is the most frequently diagnosed genital cancer among women in developed countries. Our preliminary RNA-seq analysis revealed the inverse correlation between the expression of PSMG3-AS1 and MEG3 across EC tissues, indicating the possible interaction between them. This study aimed to explore the interaction between two long non-coding RNAs (lncRNAs) PSMG3-AS1 and MEG3 in EC. Investigation of the interaction between two lncRNAs in cancer biology is a novel topic. The expression of PSMG3-AS1 and MEG3 in EC and paired non-tumor tissues from 60 EC patients were determined by RT-qPCR. Correlations between them were analyzed by Pearson's correlation coefficient. PSMG3-AS1 and MEG3 were overexpressed in EC cells to study the relationship between them. The roles of PSMG3-AS1 and MEG3 in regulating the proliferation of EC cells were assessed by CCK-8 assay. PSMG3-AS1 was upregulated, while MEG3 was downregulated in EC. Across EC tissues, the expression of PSMG3-AS1 and MEG3 were inversely correlated. In EC cells, overexpression of PSMG3-AS1 and MEG3 resulted in the downregulation of each other. In cell proliferation assay, PSMG3-AS1 promoted cell proliferation, and MEG3 inhibited cell proliferation. Moreover, the proliferation rate of cells co-transfected with PSMG3-AS1 and MEG3 expression vectors was not different from that in cells without transfections. In conclusion, PSMG3-AS1 and MEG3 may negatively regulate each other to regulate EC cell proliferation.