Huahong Zhang, Rohit Bakshi, Francesca Bagnato, Ipek Oguz
{"title":"Robust Multiple Sclerosis Lesion Inpainting with Edge Prior.","authors":"Huahong Zhang, Rohit Bakshi, Francesca Bagnato, Ipek Oguz","doi":"10.1007/978-3-030-59861-7_13","DOIUrl":null,"url":null,"abstract":"<p><p>Inpainting lesions is an important preprocessing task for algorithms analyzing brain MRIs of multiple sclerosis (MS) patients, such as tissue segmentation and cortical surface reconstruction. We propose a new deep learning approach for this task. Unlike existing inpainting approaches which ignore the lesion areas of the input image, we leverage the edge information around the lesions as a prior to help the inpainting process. Thus, the input of this network includes the T1-w image, lesion mask and the edge map computed from the T1-w image, and the output is the lesion-free image. The introduction of the edge prior is based on our observation that the edge detection results of the MRI scans will usually contain the contour of white matter (WM) and grey matter (GM), even though some undesired edges appear near the lesions. Instead of losing all the information around the neighborhood of lesions, our approach preserves the local tissue shape (brain/WM/GM) with the guidance of the input edges. The qualitative results show that our pipeline inpaints the lesion areas in a realistic and shape-consistent way. Our quantitative evaluation shows that our approach outperforms the existing state-of-the-art inpainting methods in both image-based metrics and in FreeSurfer segmentation accuracy. Furthermore, our approach demonstrates robustness to inaccurate lesion mask inputs. This is important for practical usability, because it allows for a generous over-segmentation of lesions instead of requiring precise boundaries, while still yielding accurate results.</p>","PeriodicalId":74092,"journal":{"name":"Machine learning in medical imaging. MLMI (Workshop)","volume":"12436 ","pages":"120-129"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8692168/pdf/nihms-1752653.pdf","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning in medical imaging. MLMI (Workshop)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-59861-7_13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/29 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Inpainting lesions is an important preprocessing task for algorithms analyzing brain MRIs of multiple sclerosis (MS) patients, such as tissue segmentation and cortical surface reconstruction. We propose a new deep learning approach for this task. Unlike existing inpainting approaches which ignore the lesion areas of the input image, we leverage the edge information around the lesions as a prior to help the inpainting process. Thus, the input of this network includes the T1-w image, lesion mask and the edge map computed from the T1-w image, and the output is the lesion-free image. The introduction of the edge prior is based on our observation that the edge detection results of the MRI scans will usually contain the contour of white matter (WM) and grey matter (GM), even though some undesired edges appear near the lesions. Instead of losing all the information around the neighborhood of lesions, our approach preserves the local tissue shape (brain/WM/GM) with the guidance of the input edges. The qualitative results show that our pipeline inpaints the lesion areas in a realistic and shape-consistent way. Our quantitative evaluation shows that our approach outperforms the existing state-of-the-art inpainting methods in both image-based metrics and in FreeSurfer segmentation accuracy. Furthermore, our approach demonstrates robustness to inaccurate lesion mask inputs. This is important for practical usability, because it allows for a generous over-segmentation of lesions instead of requiring precise boundaries, while still yielding accurate results.