{"title":"SIRA: Scale illumination rotation affine invariant mask R-CNN for pedestrian detection","authors":"Ujwalla Gawande, Kamal Hajari, Yogesh Golhar","doi":"10.1007/s10489-021-03073-z","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we resolve the challenging obstacle of detecting pedestrians with the ubiquity of irregularities in scale, rotation, and the illumination of the natural scene images natively. Pedestrian instances with such obstacles exhibit significantly unique characteristics. Thus, it strongly influences the performance of pedestrian detection techniques. We propose the new robust Scale Illumination Rotation and Affine invariant Mask R-CNN (SIRA M-RCNN) framework for overcoming the predecessor’s difficulties. The first phase of the proposed system deals with illumination variation by histogram analysis. Further, we use the contourlet transformation, and the directional filter bank for the generation of the rotational invariant features. Finally, we use Affine Scale Invariant Feature Transform (ASIFT) to find points that are translation and scale-invariant. Extensive evaluation of the benchmark database will prove the effectiveness of SIRA M-RCNN. The experimental results achieve state-of-the-art performance and show a significant performance improvement in pedestrian detection.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"52 9","pages":"10398 - 10416"},"PeriodicalIF":3.4000,"publicationDate":"2022-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10489-021-03073-z.pdf","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-021-03073-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 11
Abstract
In this paper, we resolve the challenging obstacle of detecting pedestrians with the ubiquity of irregularities in scale, rotation, and the illumination of the natural scene images natively. Pedestrian instances with such obstacles exhibit significantly unique characteristics. Thus, it strongly influences the performance of pedestrian detection techniques. We propose the new robust Scale Illumination Rotation and Affine invariant Mask R-CNN (SIRA M-RCNN) framework for overcoming the predecessor’s difficulties. The first phase of the proposed system deals with illumination variation by histogram analysis. Further, we use the contourlet transformation, and the directional filter bank for the generation of the rotational invariant features. Finally, we use Affine Scale Invariant Feature Transform (ASIFT) to find points that are translation and scale-invariant. Extensive evaluation of the benchmark database will prove the effectiveness of SIRA M-RCNN. The experimental results achieve state-of-the-art performance and show a significant performance improvement in pedestrian detection.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.