Using mathematical modeling to estimate time-independent cancer chemotherapy efficacy parameters.

In Silico Pharmacology Pub Date : 2021-12-05 eCollection Date: 2022-01-01 DOI:10.1007/s40203-021-00117-7
Christine Pho, Madison Frieler, Giri R Akkaraju, Anton V Naumov, Hana M Dobrovolny
{"title":"Using mathematical modeling to estimate time-independent cancer chemotherapy efficacy parameters.","authors":"Christine Pho,&nbsp;Madison Frieler,&nbsp;Giri R Akkaraju,&nbsp;Anton V Naumov,&nbsp;Hana M Dobrovolny","doi":"10.1007/s40203-021-00117-7","DOIUrl":null,"url":null,"abstract":"<p><p>One of the primary cancer treatment modalities is chemotherapy. Unfortunately, traditional anti-cancer drugs are often not selective and cause damage to healthy cells, leading to serious side effects for patients. For this reason more targeted therapeutics and drug delivery methods are being developed. The effectiveness of new treatments is initially determined via in vitro cell viability assays, which determine the <math><msub><mi>IC</mi> <mn>50</mn></msub> </math>  of the drug. However, these assays are known to result in estimates of <math><msub><mi>IC</mi> <mn>50</mn></msub> </math>  that depend on the measurement time, possibly resulting in over- or under-estimation of the <math><msub><mi>IC</mi> <mn>50</mn></msub> </math> . Here, we test the possibility of using cell growth curves and fitting of mathematical models to determine the <math><msub><mi>IC</mi> <mn>50</mn></msub> </math>  as well as the maximum efficacy of a drug ( <math><msub><mi>ε</mi> <mi>max</mi></msub> </math> ). We measured cell growth of MCF-7 and HeLa cells in the presence of different concentrations of doxorubicin and fit the data with a logistic growth model that incorporates the effect of the drug. This method leads to measurement time-independent estimates of <math><msub><mi>IC</mi> <mn>50</mn></msub> </math>  and <math><msub><mi>ε</mi> <mi>max</mi></msub> </math> , but we find that <math><msub><mi>ε</mi> <mi>max</mi></msub> </math>  is not identifiable. Further refinement of this methodology is needed to produce uniquely identifiable parameter estimates.</p>","PeriodicalId":13380,"journal":{"name":"In Silico Pharmacology","volume":" ","pages":"2"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8645675/pdf/40203_2021_Article_117.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Silico Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40203-021-00117-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

One of the primary cancer treatment modalities is chemotherapy. Unfortunately, traditional anti-cancer drugs are often not selective and cause damage to healthy cells, leading to serious side effects for patients. For this reason more targeted therapeutics and drug delivery methods are being developed. The effectiveness of new treatments is initially determined via in vitro cell viability assays, which determine the IC 50  of the drug. However, these assays are known to result in estimates of IC 50  that depend on the measurement time, possibly resulting in over- or under-estimation of the IC 50 . Here, we test the possibility of using cell growth curves and fitting of mathematical models to determine the IC 50  as well as the maximum efficacy of a drug ( ε max ). We measured cell growth of MCF-7 and HeLa cells in the presence of different concentrations of doxorubicin and fit the data with a logistic growth model that incorporates the effect of the drug. This method leads to measurement time-independent estimates of IC 50  and ε max , but we find that ε max  is not identifiable. Further refinement of this methodology is needed to produce uniquely identifiable parameter estimates.

Abstract Image

利用数学模型估计与时间无关的癌症化疗疗效参数。
化疗是主要的癌症治疗方式之一。不幸的是,传统的抗癌药物往往没有选择性,对健康细胞造成损害,给患者带来严重的副作用。因此,正在开发更有针对性的治疗方法和给药方法。新疗法的有效性最初是通过体外细胞活力测定来确定的,它决定了药物的ic50。然而,已知这些测定法的ic50估计取决于测量时间,可能导致高估或低估ic50。在这里,我们测试了使用细胞生长曲线和数学模型拟合来确定ic50和药物的最大功效(ε max)的可能性。我们测量了MCF-7和HeLa细胞在不同浓度阿霉素存在下的细胞生长情况,并将数据与包含药物效应的logistic生长模型拟合。该方法可以获得与测量时间无关的IC 50和ε max估计,但我们发现ε max无法识别。需要进一步改进这种方法,以产生唯一可识别的参数估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信