{"title":"<i>In-Silico</i> Identification of Natural Compounds from Traditional Medicine as Potential Drug Leads against SARS-CoV-2 Through Virtual Screening.","authors":"Sai Mithilesh, Divya Raghunandan, P K Suresh","doi":"10.1007/s40011-021-01292-5","DOIUrl":null,"url":null,"abstract":"<p><p>The novel coronavirus strain SARS-CoV-2 is the virus responsible for the recent global health crisis, as it causes the coronavirus disease-19 (COVID-19) in humans. Due to its high rate of spreading and significant fatality rates, the situation has escalated to a pandemic, which is the cause of immense disruption in daily life. In this study, we have taken a docking-based virtual screening approach to select natural molecules (from plants) with possible therapeutic potential. For this purpose, AUTODOCK Vina-based determination of binding affinity values (blind and active-site oriented) was obtained to short-list molecules with possible inhibitory potential against the main Mpro in SARS-CoV-2 (PDB ID 6Y2F -the monomeric form). The 4 molecules selected were Chebuloside (-8.2; -8.2), Acetoside (-8.0; -8.0), Corilagin (-8.1; -7.7) and Arjunolic Acid (-8.0; -7.6) (blind and active-site oriented docking scores (Kcal/mol) in parenthesis, respectively). Further, a comparative search, with FDA-approved drugs, has shown that Ouabain was comparable to Chebuloside with a similarity score of 0.227. This in silico finding with respect to Ouabain is significant, since this polycyclic glycoside has been shown to treat COVID-19 positive patients with a cardiovascular disease. Hydrocortisone was similar to Arjunolic acid with a score of 0.539. Again, this likeness is worthy of mention, since hydrocortisone has been used earlier for the treatment of SARS-CoV1 and MERS. However, further experimentation and validation of the results, in suitable biological model systems, are necessary to gain more insight and relevance as well as provide corroborative evidence for our <i>in-silico</i> findings.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40011-021-01292-5.</p>","PeriodicalId":54564,"journal":{"name":"Proceedings of the National Academy of Sciences, India. Section B","volume":"92 1","pages":"81-87"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8741561/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences, India. Section B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40011-021-01292-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 3
Abstract
The novel coronavirus strain SARS-CoV-2 is the virus responsible for the recent global health crisis, as it causes the coronavirus disease-19 (COVID-19) in humans. Due to its high rate of spreading and significant fatality rates, the situation has escalated to a pandemic, which is the cause of immense disruption in daily life. In this study, we have taken a docking-based virtual screening approach to select natural molecules (from plants) with possible therapeutic potential. For this purpose, AUTODOCK Vina-based determination of binding affinity values (blind and active-site oriented) was obtained to short-list molecules with possible inhibitory potential against the main Mpro in SARS-CoV-2 (PDB ID 6Y2F -the monomeric form). The 4 molecules selected were Chebuloside (-8.2; -8.2), Acetoside (-8.0; -8.0), Corilagin (-8.1; -7.7) and Arjunolic Acid (-8.0; -7.6) (blind and active-site oriented docking scores (Kcal/mol) in parenthesis, respectively). Further, a comparative search, with FDA-approved drugs, has shown that Ouabain was comparable to Chebuloside with a similarity score of 0.227. This in silico finding with respect to Ouabain is significant, since this polycyclic glycoside has been shown to treat COVID-19 positive patients with a cardiovascular disease. Hydrocortisone was similar to Arjunolic acid with a score of 0.539. Again, this likeness is worthy of mention, since hydrocortisone has been used earlier for the treatment of SARS-CoV1 and MERS. However, further experimentation and validation of the results, in suitable biological model systems, are necessary to gain more insight and relevance as well as provide corroborative evidence for our in-silico findings.
Supplementary information: The online version contains supplementary material available at 10.1007/s40011-021-01292-5.
期刊介绍:
The Proceedings of the National Academy of Sciences, India, Section B: Biological Sciences, is one of the oldest journals of India, launched in the year 1930, by the National Academy of Sciences, India (the Oldest Science Academy of India). The research/review papers of different fields of science, e.g. Agriculture Sciences (Agriculture, Animal Husbandry, Fisheries, Forestry, Agric. Toxicology, Soil Science, Plant Protection, Post Harvest Technology, and Agricultural Engineering), Animal Sciences (Structural, Developmental, Functional, Genetical, Ecological, Behavioural, Taxonomical and Evolutionary Aspects), Biochemistry, Biophysics, Biotechnology (including Molecular and Cell Biology, Structural and Functional Studies, Microbiology and Immunology), Medical & Forensic Sciences (Basic and Clinical Medical Sciences, Pharmacology, Anthropology, Psychology and Forensic Sciences, Human genetics, Reproduction Biology, Neurosciences and Molecular Medicine) and Plant Sciences (Structural, Developmental, Functional, Genetical, Ecological, Taxonomical and Evolutionary Aspects), are published in this journal for dissemination of the scientific knowledge and research. The papers published are indexed/abstracted by the leading abstracting agencies of the world. The papers are published after critical review and editing by the eminent experts of the concerned subject area; therefore, the quality publication is assured once the paper is accepted by the learned referees.