Recent Developments in Privacy-Preserving Mining of Clinical Data.

Chance Desmet, Diane J Cook
{"title":"Recent Developments in Privacy-Preserving Mining of Clinical Data.","authors":"Chance Desmet, Diane J Cook","doi":"10.1145/3447774","DOIUrl":null,"url":null,"abstract":"<p><p>With the dramatic increases in both the capability to collect personal data and the capability to analyze large amounts of data, increasingly sophisticated and personal insights are being drawn. These insights are valuable for clinical applications but also open up possibilities for identification and abuse of personal information. In this paper, we survey recent research on classical methods of privacy-preserving data mining. Looking at dominant techniques and recent innovations to them, we examine the applicability of these methods to the privacy-preserving analysis of clinical data. We also discuss promising directions for future research in this area.</p>","PeriodicalId":93404,"journal":{"name":"ACM/IMS transactions on data science","volume":"2 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746818/pdf/nihms-1678257.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IMS transactions on data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the dramatic increases in both the capability to collect personal data and the capability to analyze large amounts of data, increasingly sophisticated and personal insights are being drawn. These insights are valuable for clinical applications but also open up possibilities for identification and abuse of personal information. In this paper, we survey recent research on classical methods of privacy-preserving data mining. Looking at dominant techniques and recent innovations to them, we examine the applicability of these methods to the privacy-preserving analysis of clinical data. We also discuss promising directions for future research in this area.

Abstract Image

Abstract Image

Abstract Image

临床数据隐私保护挖掘的最新进展。
随着收集个人数据的能力和分析大量数据的能力的急剧提高,人们越来越深入地了解个人情况。这些见解对临床应用很有价值,但也为识别和滥用个人信息开辟了可能性。在本文中,我们综述了最近对隐私保护数据挖掘的经典方法的研究。通过观察主流技术和最近的创新,我们检验了这些方法在临床数据隐私保护分析中的适用性。我们还讨论了该领域未来研究的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信