{"title":"Recent Developments in Privacy-Preserving Mining of Clinical Data.","authors":"Chance Desmet, Diane J Cook","doi":"10.1145/3447774","DOIUrl":null,"url":null,"abstract":"<p><p>With the dramatic increases in both the capability to collect personal data and the capability to analyze large amounts of data, increasingly sophisticated and personal insights are being drawn. These insights are valuable for clinical applications but also open up possibilities for identification and abuse of personal information. In this paper, we survey recent research on classical methods of privacy-preserving data mining. Looking at dominant techniques and recent innovations to them, we examine the applicability of these methods to the privacy-preserving analysis of clinical data. We also discuss promising directions for future research in this area.</p>","PeriodicalId":93404,"journal":{"name":"ACM/IMS transactions on data science","volume":"2 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746818/pdf/nihms-1678257.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM/IMS transactions on data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
With the dramatic increases in both the capability to collect personal data and the capability to analyze large amounts of data, increasingly sophisticated and personal insights are being drawn. These insights are valuable for clinical applications but also open up possibilities for identification and abuse of personal information. In this paper, we survey recent research on classical methods of privacy-preserving data mining. Looking at dominant techniques and recent innovations to them, we examine the applicability of these methods to the privacy-preserving analysis of clinical data. We also discuss promising directions for future research in this area.