{"title":"Wnt/PCP pathway regulates the migration and neural differentiation of mesenchymal stem cells in vitro.","authors":"Panpan Yao, Qin Yu, Lujie Zhu, Jingxian Li, Xueyuan Zhou, Lili Wu, Yongyi Cai, Hongmei Shen, Liping Zhou","doi":"10.5603/FHC.a2022.0006","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Mesenchymal stem cells (MSCs) are an excellent donor graft source due to their potential for self-renewal and multidirectional differentiation. However, the potential mechanisms involved in MSC homing and neural differentiation are still unclear. The purpose of this study was to explore the effects of a chemokine, SDF-1a, and Wnt3a ligand on rat MSCs' migration and b-mercaptoethanol (BME)-induced neural differentiation of MSCs.</p><p><strong>Materials and methods: </strong>MSCs were isolated from rat bone marrow and cultured in vitro to passage 3. Scratch tests and transwell assays were used to estimate the effects of SDF-1a (25 ng/mL) and Wnt3a (10 ng/mL) on the migration of MSCs. The expression of Wnt/PCP pathway proteins RhoA, c-Jun, ATF2, and Wnt3a were assessed by Western blot. The 5 mM BME-induced neural differentiation of MSCs was determined by immunofluorescence to detect neuron- and astrocyte-specific markers such as nestin, GFAP, and Olig2.</p><p><strong>Results: </strong>Wnt3a promoted the migration ability of MSCs and regulated the expression of RhoA, c-Jun, and ATF2 proteins. MSCs could differentiate into neural stem cells and astrocytes. Wnt3a enhanced BME induced neurogenesis in MSCs by increasing the protein expression of RhoA, c-Jun, and Wnt3a.</p><p><strong>Conclusions: </strong>The present study demonstrated that the Wnt/PCP pathway promotes migration and neural differentiation of rat MSC.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.5603/FHC.a2022.0006","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Introduction: Mesenchymal stem cells (MSCs) are an excellent donor graft source due to their potential for self-renewal and multidirectional differentiation. However, the potential mechanisms involved in MSC homing and neural differentiation are still unclear. The purpose of this study was to explore the effects of a chemokine, SDF-1a, and Wnt3a ligand on rat MSCs' migration and b-mercaptoethanol (BME)-induced neural differentiation of MSCs.
Materials and methods: MSCs were isolated from rat bone marrow and cultured in vitro to passage 3. Scratch tests and transwell assays were used to estimate the effects of SDF-1a (25 ng/mL) and Wnt3a (10 ng/mL) on the migration of MSCs. The expression of Wnt/PCP pathway proteins RhoA, c-Jun, ATF2, and Wnt3a were assessed by Western blot. The 5 mM BME-induced neural differentiation of MSCs was determined by immunofluorescence to detect neuron- and astrocyte-specific markers such as nestin, GFAP, and Olig2.
Results: Wnt3a promoted the migration ability of MSCs and regulated the expression of RhoA, c-Jun, and ATF2 proteins. MSCs could differentiate into neural stem cells and astrocytes. Wnt3a enhanced BME induced neurogenesis in MSCs by increasing the protein expression of RhoA, c-Jun, and Wnt3a.
Conclusions: The present study demonstrated that the Wnt/PCP pathway promotes migration and neural differentiation of rat MSC.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.