{"title":"Sensory feedback expands dynamic complexity and aids in robustness against noise.","authors":"Alexander J White","doi":"10.1007/s00422-021-00917-2","DOIUrl":null,"url":null,"abstract":"<p><p>It has been hypothesized that sensory feedback is a critical component in determining the functionality of a central pattern generator. To test this, Yu and Thomas's recent work Yu and Thomas (Biol Cybern 115(2):135-160, 2021) built a model of a half-center oscillator coupled to a simple muscular model with sensory feedback. They showed that sensory feedback increases robustness against external noise, while simultaneously expanding the potential repertoire of functions the half-center oscillator can perform. However, they show that this comes at the cost of robustness against internal noise.</p>","PeriodicalId":55374,"journal":{"name":"Biological Cybernetics","volume":" ","pages":"267-269"},"PeriodicalIF":1.7000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Cybernetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00422-021-00917-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/4 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0
Abstract
It has been hypothesized that sensory feedback is a critical component in determining the functionality of a central pattern generator. To test this, Yu and Thomas's recent work Yu and Thomas (Biol Cybern 115(2):135-160, 2021) built a model of a half-center oscillator coupled to a simple muscular model with sensory feedback. They showed that sensory feedback increases robustness against external noise, while simultaneously expanding the potential repertoire of functions the half-center oscillator can perform. However, they show that this comes at the cost of robustness against internal noise.
期刊介绍:
Biological Cybernetics is an interdisciplinary medium for theoretical and application-oriented aspects of information processing in organisms, including sensory, motor, cognitive, and ecological phenomena. Topics covered include: mathematical modeling of biological systems; computational, theoretical or engineering studies with relevance for understanding biological information processing; and artificial implementation of biological information processing and self-organizing principles. Under the main aspects of performance and function of systems, emphasis is laid on communication between life sciences and technical/theoretical disciplines.