Aswin Chari, Sophie Adler, Konrad Wagstyl, Kiran Seunarine, Hani Marcus, Torsten Baldeweg, Martin Tisdall
{"title":"IDEAL approach to the evaluation of machine learning technology in epilepsy surgery: protocol for the MAST trial.","authors":"Aswin Chari, Sophie Adler, Konrad Wagstyl, Kiran Seunarine, Hani Marcus, Torsten Baldeweg, Martin Tisdall","doi":"10.1136/bmjsit-2021-000109","DOIUrl":null,"url":null,"abstract":"<p><p>Epilepsy and epilepsy surgery lend themselves well to the application of machine learning (ML) and artificial intelligence (AI) technologies. This is evidenced by the plethora of tools developed for applications such as seizure detection and analysis of imaging and electrophysiological data. However, few of these tools have been directly used to guide patient management. In recent years, the Idea, Development, Exploration, Assessment, Long-Term Follow-Up (IDEAL) collaboration has formalised stages for the evaluation of surgical innovation and medical devices, and, in many ways, this pragmatic framework is also applicable to ML/AI technology, balancing innovation and safety. In this protocol paper, we outline the preclinical (IDEAL stage 0) evaluation and the protocol for a prospective (IDEAL stage 1/2a) study to evaluate the utility of an ML lesion detection algorithm designed to detect focal cortical dysplasia from structural MRI, as an adjunct in the planning of stereoelectroencephalography trajectories in children undergoing intracranial evaluation for drug-resistant epilepsy.</p>","PeriodicalId":33349,"journal":{"name":"BMJ Surgery Interventions Health Technologies","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/f7/fb/bmjsit-2021-000109.PMC8796270.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Surgery Interventions Health Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/bmjsit-2021-000109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0
Abstract
Epilepsy and epilepsy surgery lend themselves well to the application of machine learning (ML) and artificial intelligence (AI) technologies. This is evidenced by the plethora of tools developed for applications such as seizure detection and analysis of imaging and electrophysiological data. However, few of these tools have been directly used to guide patient management. In recent years, the Idea, Development, Exploration, Assessment, Long-Term Follow-Up (IDEAL) collaboration has formalised stages for the evaluation of surgical innovation and medical devices, and, in many ways, this pragmatic framework is also applicable to ML/AI technology, balancing innovation and safety. In this protocol paper, we outline the preclinical (IDEAL stage 0) evaluation and the protocol for a prospective (IDEAL stage 1/2a) study to evaluate the utility of an ML lesion detection algorithm designed to detect focal cortical dysplasia from structural MRI, as an adjunct in the planning of stereoelectroencephalography trajectories in children undergoing intracranial evaluation for drug-resistant epilepsy.