Norisvaldo Ferraz Junior, Anderson A A Silva, Adilson E Guelfi, Sergio T Kofuji
{"title":"Performance evaluation of publish-subscribe systems in IoT using energy-efficient and context-aware secure messages.","authors":"Norisvaldo Ferraz Junior, Anderson A A Silva, Adilson E Guelfi, Sergio T Kofuji","doi":"10.1186/s13677-022-00278-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The Internet of Things (IoT) enables the development of innovative applications in various domains such as healthcare, transportation, and Industry 4.0. Publish-subscribe systems enable IoT devices to communicate with the cloud platform. However, IoT applications need context-aware messages to translate the data into contextual information, allowing the applications to act cognitively. Besides, end-to-end security of publish-subscribe messages on both ends (devices and cloud) is essential. However, achieving security on constrained IoT devices with memory, payload, and energy restrictions is a challenge.</p><p><strong>Contribution: </strong>Messages in IoT need to achieve both energy efficiency and secure delivery. Thus, the main contribution of this paper refers to a performance evaluation of a message structure that standardizes the publish-subscribe topic and payload used by the cloud platform and the IoT devices. We also propose a standardization for the topic and payload for publish-subscribe systems.</p><p><strong>Conclusion: </strong>The messages promote energy efficiency, enabling ultra-low-power and high-capacity devices and reducing the bytes transmitted in the IoT domain. The performance evaluation demonstrates that publish-subscribe systems (namely, AMQP, DDS, and MQTT) can use our proposed energy-efficient message structure on IoT. Additionally, the message system provides end-to-end confidentiality, integrity, and authenticity between IoT devices and the cloud platform.</p>","PeriodicalId":520665,"journal":{"name":"Journal of cloud computing (Heidelberg, Germany)","volume":" ","pages":"6"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8802267/pdf/","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of cloud computing (Heidelberg, Germany)","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s13677-022-00278-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/31 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Background: The Internet of Things (IoT) enables the development of innovative applications in various domains such as healthcare, transportation, and Industry 4.0. Publish-subscribe systems enable IoT devices to communicate with the cloud platform. However, IoT applications need context-aware messages to translate the data into contextual information, allowing the applications to act cognitively. Besides, end-to-end security of publish-subscribe messages on both ends (devices and cloud) is essential. However, achieving security on constrained IoT devices with memory, payload, and energy restrictions is a challenge.
Contribution: Messages in IoT need to achieve both energy efficiency and secure delivery. Thus, the main contribution of this paper refers to a performance evaluation of a message structure that standardizes the publish-subscribe topic and payload used by the cloud platform and the IoT devices. We also propose a standardization for the topic and payload for publish-subscribe systems.
Conclusion: The messages promote energy efficiency, enabling ultra-low-power and high-capacity devices and reducing the bytes transmitted in the IoT domain. The performance evaluation demonstrates that publish-subscribe systems (namely, AMQP, DDS, and MQTT) can use our proposed energy-efficient message structure on IoT. Additionally, the message system provides end-to-end confidentiality, integrity, and authenticity between IoT devices and the cloud platform.