Beyond Two Cultures: Cultural Infrastructure for Data-driven Decision Support.

Nikki L B Freeman, John Sperger, Helal El-Zaatari, Anna R Kahkoska, Minxin Lu, Michael Valancius, Arti V Virkud, Tarek M Zikry, Michael R Kosorok
{"title":"Beyond Two Cultures: Cultural Infrastructure for Data-driven Decision Support.","authors":"Nikki L B Freeman, John Sperger, Helal El-Zaatari, Anna R Kahkoska, Minxin Lu, Michael Valancius, Arti V Virkud, Tarek M Zikry, Michael R Kosorok","doi":"10.1353/obs.2021.0024","DOIUrl":null,"url":null,"abstract":"<p><p>In the twenty years since Dr. Leo Breiman's incendiary paper <i>Statistical Modeling: The Two Cultures</i> was first published, algorithmic modeling techniques have gone from controversial to commonplace in the statistical community. While the widespread adoption of these methods as part of the contemporary statistician's toolkit is a testament to Dr. Breiman's vision, the number of high-profile failures of algorithmic models suggests that Dr. Breiman's final remark that \"the emphasis needs to be on the problem and the data\" has been less widely heeded. In the spirit of Dr. Breiman, we detail an emerging research community in statistics - data-driven decision support. We assert that to realize the full potential of decision support, broadly and in the context of precision health, will require a culture of social awareness and accountability, in addition to ongoing attention towards complex technical challenges.</p>","PeriodicalId":74335,"journal":{"name":"Observational studies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8802367/pdf/nihms-1773096.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Observational studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1353/obs.2021.0024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the twenty years since Dr. Leo Breiman's incendiary paper Statistical Modeling: The Two Cultures was first published, algorithmic modeling techniques have gone from controversial to commonplace in the statistical community. While the widespread adoption of these methods as part of the contemporary statistician's toolkit is a testament to Dr. Breiman's vision, the number of high-profile failures of algorithmic models suggests that Dr. Breiman's final remark that "the emphasis needs to be on the problem and the data" has been less widely heeded. In the spirit of Dr. Breiman, we detail an emerging research community in statistics - data-driven decision support. We assert that to realize the full potential of decision support, broadly and in the context of precision health, will require a culture of social awareness and accountability, in addition to ongoing attention towards complex technical challenges.

超越两种文化:数据驱动决策支持的文化基础设施。
自Leo Breiman博士的煽动性论文《统计建模:两种文化》首次发表以来的20年里,算法建模技术在统计界已经从有争议的变成了司空见惯的事情。这些方法作为当代统计学家工具箱的一部分被广泛采用,这证明了布雷曼博士的远见,但算法模型的大量引人注目的失败表明,布雷曼博士的最后一句话“重点需要放在问题和数据上”并没有得到广泛的重视。本着Breiman博士的精神,我们详细介绍了一个新兴的统计学研究社区——数据驱动的决策支持。我们认为,要在广泛和精确保健的背景下充分发挥决策支持的潜力,除了持续关注复杂的技术挑战外,还需要一种社会意识和问责制的文化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信