{"title":"Maximizing Charge Injection Limits of Iridium Oxide Electrodes with a Programmable Anodic Bias Circuit.","authors":"Alpaslan Ersöz, Insoo Kim, Martin Han","doi":"10.1109/ner49283.2021.9441282","DOIUrl":null,"url":null,"abstract":"<p><p>Efficacious stimulation of neural tissues requires high charge injection capacity while minimizing electrode polarization. Applying anodic bias on certain electrode materials is a way to enhance charge injection both <i>in vitro</i> and <i>in vivo</i>. We developed an embedded neurostimulator system that enabled a digital control of user-defined bias levels, without requiring a potentiometer or external voltage source. Comparison of charge injection with and without anodic-bias, as well as at different bias potentials were conducted in phosphate-buffered saline with Blackrock iridium oxide microelectrodes. Results showed that a nine-fold increase in current intensity and charge injection capacity, was achieved with a 0.7 V anodic bias and within electrochemically safe limits.</p>","PeriodicalId":73414,"journal":{"name":"International IEEE/EMBS Conference on Neural Engineering : [proceedings]. International IEEE EMBS Conference on Neural Engineering","volume":" ","pages":"540-543"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/ner49283.2021.9441282","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International IEEE/EMBS Conference on Neural Engineering : [proceedings]. International IEEE EMBS Conference on Neural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ner49283.2021.9441282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Efficacious stimulation of neural tissues requires high charge injection capacity while minimizing electrode polarization. Applying anodic bias on certain electrode materials is a way to enhance charge injection both in vitro and in vivo. We developed an embedded neurostimulator system that enabled a digital control of user-defined bias levels, without requiring a potentiometer or external voltage source. Comparison of charge injection with and without anodic-bias, as well as at different bias potentials were conducted in phosphate-buffered saline with Blackrock iridium oxide microelectrodes. Results showed that a nine-fold increase in current intensity and charge injection capacity, was achieved with a 0.7 V anodic bias and within electrochemically safe limits.