{"title":"PPDTS: Predicting potential drug-target interactions based on network similarity.","authors":"Wei Wang, Yongqing Wang, Yu Zhang, Dong Liu, Hongjun Zhang, Xianfang Wang","doi":"10.1049/syb2.12037","DOIUrl":null,"url":null,"abstract":"<p><p>Identification of drug-target interactions (DTIs) has great practical importance in the drug discovery process for known diseases. However, only a small proportion of DTIs in these databases has been verified experimentally, and the computational methods for predicting the interactions remain challenging. As a result, some effective computational models have become increasingly popular for predicting DTIs. In this work, the authors predict potential DTIs from the local structure of drug-target associations' network, which is different from the traditional global network similarity methods based on structure and ligand. A novel method called PPDTS is proposed to predict DTIs. First, according to the DTIs' network local structure, the known DTIs are converted into a binary network. Second, the Resource Allocation algorithm is used to obtain a drug-drug similarity network and a target-target similarity network. Third, a Collaborative Filtering algorithm is used with the known drug-target topology information to obtain similarity scores. Fourth, the linear combination of drug-target similarity model and the target-drug similarity model are innovatively proposed to obtain the final prediction results. Finally, the experimental performance of PPDTS has proved to be higher than that of the previously mentioned four popular network-based similarity methods, which is validated in different experimental datasets. Some of the predicted results can be supported in UniProt and DrugBank databases.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/83/cf/SYB2-16-18.PMC8849239.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1049/syb2.12037","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Identification of drug-target interactions (DTIs) has great practical importance in the drug discovery process for known diseases. However, only a small proportion of DTIs in these databases has been verified experimentally, and the computational methods for predicting the interactions remain challenging. As a result, some effective computational models have become increasingly popular for predicting DTIs. In this work, the authors predict potential DTIs from the local structure of drug-target associations' network, which is different from the traditional global network similarity methods based on structure and ligand. A novel method called PPDTS is proposed to predict DTIs. First, according to the DTIs' network local structure, the known DTIs are converted into a binary network. Second, the Resource Allocation algorithm is used to obtain a drug-drug similarity network and a target-target similarity network. Third, a Collaborative Filtering algorithm is used with the known drug-target topology information to obtain similarity scores. Fourth, the linear combination of drug-target similarity model and the target-drug similarity model are innovatively proposed to obtain the final prediction results. Finally, the experimental performance of PPDTS has proved to be higher than that of the previously mentioned four popular network-based similarity methods, which is validated in different experimental datasets. Some of the predicted results can be supported in UniProt and DrugBank databases.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.