{"title":"Proliferation and differentiation of primary bovine myoblasts using Chlorella vulgaris extract for sustainable production of cultured meat","authors":"Yuta Okamoto, Yuji Haraguchi, Azumi Yoshida, Hironobu Takahashi, Kumiko Yamanaka, Naoya Sawamura, Toru Asahi, Tatsuya Shimizu","doi":"10.1002/btpr.3239","DOIUrl":null,"url":null,"abstract":"<p>Recently, cultured meat obtained from livestock-derived cells is being considered as a sustainable food source that reduces the use of natural resources. This study aimed to show that nutrients extracted from <i>Chlorella vulgaris</i> were beneficial in the culture of primary bovine myoblasts (PBMs), a major cell source for cultured meat production. Nutrients (glucose, amino acids, and vitamins) present in the animal-cell culture media were effectively recovered from <i>C. vulgaris</i> using acid hydrolysis treatment. On culture in nutrient-free inorganic salt solution, cell death was induced in most PBMs after 6 days of cultivation. However, the addition of <i>C. vulgaris</i> extract (CVE) significantly improved PBM viability, which was comparable to the viability in conventional culture medium (Dulbecco's modified Eagle's medium). Furthermore, by adding horse serum to induce differentiation, the formation of myotubes was confirmed when CVE were used. Together, the results showed that CVE could be used as an alternative to the conventional culture medium for PBMs. These findings will not only lower the environmental risks associated with the establishment of this eco-friendly cell culture system, but also highlight microalgae as a potent nutrient source that can replace conventional grain-dependent nutrient sources.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":"38 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2022-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/btpr.3239","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 17
Abstract
Recently, cultured meat obtained from livestock-derived cells is being considered as a sustainable food source that reduces the use of natural resources. This study aimed to show that nutrients extracted from Chlorella vulgaris were beneficial in the culture of primary bovine myoblasts (PBMs), a major cell source for cultured meat production. Nutrients (glucose, amino acids, and vitamins) present in the animal-cell culture media were effectively recovered from C. vulgaris using acid hydrolysis treatment. On culture in nutrient-free inorganic salt solution, cell death was induced in most PBMs after 6 days of cultivation. However, the addition of C. vulgaris extract (CVE) significantly improved PBM viability, which was comparable to the viability in conventional culture medium (Dulbecco's modified Eagle's medium). Furthermore, by adding horse serum to induce differentiation, the formation of myotubes was confirmed when CVE were used. Together, the results showed that CVE could be used as an alternative to the conventional culture medium for PBMs. These findings will not only lower the environmental risks associated with the establishment of this eco-friendly cell culture system, but also highlight microalgae as a potent nutrient source that can replace conventional grain-dependent nutrient sources.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.