Kishan R Bharadwa, Kuheli Dasgupta, Suma Mysore Narayana, C Ramachandra, Suresh M C Babu, Annapoorni Rangarajan, Rekha V Kumar
{"title":"PD-1 and PD-L1 Expression in Indian Women with Breast Cancer.","authors":"Kishan R Bharadwa, Kuheli Dasgupta, Suma Mysore Narayana, C Ramachandra, Suresh M C Babu, Annapoorni Rangarajan, Rekha V Kumar","doi":"10.4274/ejbh.galenos.2021.2021-5-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The interaction between programmed cell death protein 1 (PD-1) on activated T-lymphocytes and programmed death-ligand 1 (PD-L1) on tumor cells or antigen-presenting cells sends immunosuppressive signals leading to the escape of tumor cells from the host anti-tumor immune response. Inhibiting this interaction with antibodies against PD-1 or PD-L1 is emerging as a valuable therapeutic strategy. However, tissue distribution patterns for PD-L1 and PD-1 in breast cancer patients from India are not reported, yet many clinical trials are underway. In this study the expression of PD-1 and PD-L1 in breast cancer patient samples from India was characterized.</p><p><strong>Materials and methods: </strong>The study included 392 cases of operated breast cancer (2012-2017) from a tertiary cancer care center in Bangalore, Karnataka, India. Paraffin blocks were retrievable and receptor status was known. Immunohistochemistry (IHC) was performed using anti-PD-L1 and anti-PD-1 antibodies. RNA was isolated from 76 fresh tumors and nine adjacent normal tissues (2019). PD-L1 transcript levels were measured by RT-qPCR using <i>Hypoxanthine-guanine phosphoribosyl transferase (HPRT)</i> as a reference gene.</p><p><strong>Results: </strong>Based on IHC, PD-1 expression within tumor-infiltrating immune cells (TIICs) was observed in 55/385 cases (14%) across all breast cancer types. In triple-negative breast cancer (TNBC), 21/132 cases (16%) showed PD-1 staining in TIICs. The overall expression of PD-L1 in breast tumor cells across all breast cancer subtypes and TIICs was 11% (41/378) and 39% (151/385), respectively. A relatively higher proportion of TNBC cases had PD-L1 expression in tumor cells (17/132 cases, 13%) and immune cells (68/132 cases, 52%). We also detected PD-L1 transcript expression by qRT-PCR in freshly isolated tumor samples.</p><p><strong>Conclusion: </strong>These findings show that around 52% (68/132) of the TNBC cases express PD-L1 in TIICs. Hence, anti-PD-1/PD-L1 therapy alone or combined with chemotherapy may be a promising treatment for TNBC in Indian patients.</p>","PeriodicalId":11885,"journal":{"name":"European journal of breast health","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8734527/pdf/ejbh-18-21.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of breast health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4274/ejbh.galenos.2021.2021-5-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Objective: The interaction between programmed cell death protein 1 (PD-1) on activated T-lymphocytes and programmed death-ligand 1 (PD-L1) on tumor cells or antigen-presenting cells sends immunosuppressive signals leading to the escape of tumor cells from the host anti-tumor immune response. Inhibiting this interaction with antibodies against PD-1 or PD-L1 is emerging as a valuable therapeutic strategy. However, tissue distribution patterns for PD-L1 and PD-1 in breast cancer patients from India are not reported, yet many clinical trials are underway. In this study the expression of PD-1 and PD-L1 in breast cancer patient samples from India was characterized.
Materials and methods: The study included 392 cases of operated breast cancer (2012-2017) from a tertiary cancer care center in Bangalore, Karnataka, India. Paraffin blocks were retrievable and receptor status was known. Immunohistochemistry (IHC) was performed using anti-PD-L1 and anti-PD-1 antibodies. RNA was isolated from 76 fresh tumors and nine adjacent normal tissues (2019). PD-L1 transcript levels were measured by RT-qPCR using Hypoxanthine-guanine phosphoribosyl transferase (HPRT) as a reference gene.
Results: Based on IHC, PD-1 expression within tumor-infiltrating immune cells (TIICs) was observed in 55/385 cases (14%) across all breast cancer types. In triple-negative breast cancer (TNBC), 21/132 cases (16%) showed PD-1 staining in TIICs. The overall expression of PD-L1 in breast tumor cells across all breast cancer subtypes and TIICs was 11% (41/378) and 39% (151/385), respectively. A relatively higher proportion of TNBC cases had PD-L1 expression in tumor cells (17/132 cases, 13%) and immune cells (68/132 cases, 52%). We also detected PD-L1 transcript expression by qRT-PCR in freshly isolated tumor samples.
Conclusion: These findings show that around 52% (68/132) of the TNBC cases express PD-L1 in TIICs. Hence, anti-PD-1/PD-L1 therapy alone or combined with chemotherapy may be a promising treatment for TNBC in Indian patients.