Reproducibility of Research During COVID-19: Examining the Case of Population Density and the Basic Reproductive Rate from the Perspective of Spatial Analysis
{"title":"Reproducibility of Research During COVID-19: Examining the Case of Population Density and the Basic Reproductive Rate from the Perspective of Spatial Analysis","authors":"Antonio Paez","doi":"10.1111/gean.12307","DOIUrl":null,"url":null,"abstract":"<p>The emergence of the novel SARS-CoV-2 coronavirus and the global COVID-19 pandemic in 2019 led to explosive growth in scientific research. Alas, much of the research in the literature lacks conditions to be reproducible, and recent publications on the association between population density and the basic reproductive number of SARS-CoV-2 are no exception. Relatively few papers share code and data sufficiently, which hinders not only verification but additional experimentation. In this article, an example of reproducible research shows the potential of spatial analysis for epidemiology research during COVID-19. Transparency and openness means that independent researchers can, with only modest efforts, verify findings and use different approaches as appropriate. Given the high stakes of the situation, it is essential that scientific findings, on which good policy depends, are as robust as possible; as the empirical example shows, reproducibility is one of the keys to ensure this.</p>","PeriodicalId":12533,"journal":{"name":"Geographical Analysis","volume":"54 4","pages":"860-880"},"PeriodicalIF":3.3000,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8652856/pdf/GEAN-9999-0.pdf","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geographical Analysis","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gean.12307","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 14
Abstract
The emergence of the novel SARS-CoV-2 coronavirus and the global COVID-19 pandemic in 2019 led to explosive growth in scientific research. Alas, much of the research in the literature lacks conditions to be reproducible, and recent publications on the association between population density and the basic reproductive number of SARS-CoV-2 are no exception. Relatively few papers share code and data sufficiently, which hinders not only verification but additional experimentation. In this article, an example of reproducible research shows the potential of spatial analysis for epidemiology research during COVID-19. Transparency and openness means that independent researchers can, with only modest efforts, verify findings and use different approaches as appropriate. Given the high stakes of the situation, it is essential that scientific findings, on which good policy depends, are as robust as possible; as the empirical example shows, reproducibility is one of the keys to ensure this.
期刊介绍:
First in its specialty area and one of the most frequently cited publications in geography, Geographical Analysis has, since 1969, presented significant advances in geographical theory, model building, and quantitative methods to geographers and scholars in a wide spectrum of related fields. Traditionally, mathematical and nonmathematical articulations of geographical theory, and statements and discussions of the analytic paradigm are published in the journal. Spatial data analyses and spatial econometrics and statistics are strongly represented.