The projected impacts of smart decline on urban runoff contamination levels.

IF 2.6 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Computational urban science Pub Date : 2021-12-01 Epub Date: 2021-03-29 DOI:10.1007/s43762-021-00002-1
Rui Zhu, Galen Newman
{"title":"The projected impacts of smart decline on urban runoff contamination levels.","authors":"Rui Zhu, Galen Newman","doi":"10.1007/s43762-021-00002-1","DOIUrl":null,"url":null,"abstract":"<p><p>There has been mounting interest about how the repurposing of vacant land (VL) through green infrastructure (the most common smart decline strategy) can reduce stormwater runoff and improve runoff quality, especially in legacy cities characterized by excessive industrial land uses and VL amounts. This research examines the long-term impacts of smart decline on both stormwater amounts and pollutants loads through integrating land use prediction models with green infrastructure performance models. Using the City of St. Louis, Missouri, USA as the study area, we simulate 2025 land use change using the Conversion of Land Use and its Effects (CLUE-S) and Markov Chain urban land use prediction models and assess these change's probable impacts on urban contamination levels under different smart decline scenarios using the Long-Term Hydrologic Impact Assessment (L-THIA) performance model. The four different scenarios are: (1) a baseline scenario, (2) a 10% vacant land re-greening (VLRG) scenario, (3) a 20% VLRG scenario, and (4) a 30% VLRG scenario. The results of this study illustrate that smart decline VLRG strategies can have both direct and indirect impacts on urban stormwater runoff and their inherent contamination levels. Direct impacts on urban contamination include the reduction of stormwater runoff and non-point source (NPS) pollutants. In the 30% VLRG scenario, the annual runoff volume decreases by 11%, both physical, chemical, and bacterial pollutants are reduced by an average of 19%, compared to the baseline scenario. Indirect impacts include reduction of the possibility of illegal dumping on VL through mitigation and prevention of future vacancies.</p>","PeriodicalId":72667,"journal":{"name":"Computational urban science","volume":"1 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8653986/pdf/nihms-1752045.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational urban science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43762-021-00002-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

There has been mounting interest about how the repurposing of vacant land (VL) through green infrastructure (the most common smart decline strategy) can reduce stormwater runoff and improve runoff quality, especially in legacy cities characterized by excessive industrial land uses and VL amounts. This research examines the long-term impacts of smart decline on both stormwater amounts and pollutants loads through integrating land use prediction models with green infrastructure performance models. Using the City of St. Louis, Missouri, USA as the study area, we simulate 2025 land use change using the Conversion of Land Use and its Effects (CLUE-S) and Markov Chain urban land use prediction models and assess these change's probable impacts on urban contamination levels under different smart decline scenarios using the Long-Term Hydrologic Impact Assessment (L-THIA) performance model. The four different scenarios are: (1) a baseline scenario, (2) a 10% vacant land re-greening (VLRG) scenario, (3) a 20% VLRG scenario, and (4) a 30% VLRG scenario. The results of this study illustrate that smart decline VLRG strategies can have both direct and indirect impacts on urban stormwater runoff and their inherent contamination levels. Direct impacts on urban contamination include the reduction of stormwater runoff and non-point source (NPS) pollutants. In the 30% VLRG scenario, the annual runoff volume decreases by 11%, both physical, chemical, and bacterial pollutants are reduced by an average of 19%, compared to the baseline scenario. Indirect impacts include reduction of the possibility of illegal dumping on VL through mitigation and prevention of future vacancies.

智能下降对城市径流污染水平的预期影响。
人们越来越关注通过绿色基础设施(最常见的智能减排策略)重新利用空置土地(VL)如何减少雨水径流并改善径流质量,尤其是在工业用地和空置土地数量过多的传统城市。本研究通过将土地利用预测模型与绿色基础设施性能模型相结合,研究了智能减排对雨水量和污染物负荷的长期影响。我们以美国密苏里州圣路易斯市为研究区域,使用土地利用及其影响转换(CLUE-S)和马尔可夫链城市土地利用预测模型模拟了 2025 年的土地利用变化,并使用长期水文影响评估(L-THIA)性能模型评估了这些变化在不同智能衰退情景下对城市污染水平的可能影响。四种不同的情景是(1) 基准情景,(2) 10%空地复绿 (VLRG) 情景,(3) 20% 空地复绿情景,以及 (4) 30% 空地复绿情景。这项研究的结果表明,智能下降 VLRG 策略可对城市雨水径流及其固有污染水平产生直接和间接影响。对城市污染的直接影响包括减少雨水径流和非点源 (NPS) 污染物。与基线方案相比,在 30% VLRG 方案中,年径流量减少了 11%,物理、化学和细菌污染物平均减少了 19%。间接影响包括通过缓解和防止未来空置来减少在 VL 上非法倾倒的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信