The Agonist-antagonist Myoneural Interface.

IF 0.2 Q4 ORTHOPEDICS
Hugh Herr, Matthew J Carty
{"title":"The Agonist-antagonist Myoneural Interface.","authors":"Hugh Herr,&nbsp;Matthew J Carty","doi":"10.1097/bto.0000000000000552","DOIUrl":null,"url":null,"abstract":"<p><p>Scientist and technologist have long sought to advance limb prostheses that connect directly to the peripheral nervous system, enabling a person with amputation to volitionally control synthetic actuators that move, stiffen and power the prosthesis, as well as to experience natural afferent sensations from the prosthesis. Recently, the agonist-antagonist myoneural interface (AMI) was developed, a mechanoneural transduction architecture and neural interface system designed to provide persons with amputation improved muscle-tendon proprioception and neuroprosthetic control. In this paper, we provide an overview of the AMI, including its conceptual framing and pre-clinical science, surgical techniques for its construction, and clinical efficacy related to pain mitigation, phantom limb range of motion, fascicle dynamics, central brain proprioceptive sensorimotor preservation, and prosthetic controllability. Following this broad overview, we end with a discussion of current limitations of the AMI and potential resolutions to such challenges.</p>","PeriodicalId":45336,"journal":{"name":"Techniques in Orthopaedics","volume":null,"pages":null},"PeriodicalIF":0.2000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d2/2e/bto-14-337.PMC8630671.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Techniques in Orthopaedics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/bto.0000000000000552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 5

Abstract

Scientist and technologist have long sought to advance limb prostheses that connect directly to the peripheral nervous system, enabling a person with amputation to volitionally control synthetic actuators that move, stiffen and power the prosthesis, as well as to experience natural afferent sensations from the prosthesis. Recently, the agonist-antagonist myoneural interface (AMI) was developed, a mechanoneural transduction architecture and neural interface system designed to provide persons with amputation improved muscle-tendon proprioception and neuroprosthetic control. In this paper, we provide an overview of the AMI, including its conceptual framing and pre-clinical science, surgical techniques for its construction, and clinical efficacy related to pain mitigation, phantom limb range of motion, fascicle dynamics, central brain proprioceptive sensorimotor preservation, and prosthetic controllability. Following this broad overview, we end with a discussion of current limitations of the AMI and potential resolutions to such challenges.

Abstract Image

Abstract Image

Abstract Image

激动剂-拮抗剂肌神经界面。
长期以来,科学家和技术人员一直在寻求发展直接连接到周围神经系统的假肢,使截肢者能够自愿控制合成致动器,使假肢移动、僵硬和动力,并体验来自假肢的自然传入感觉。最近,激动剂-拮抗剂肌神经界面(AMI)被开发出来,这是一种机械神经传导结构和神经界面系统,旨在为截肢患者提供改善的肌肉肌腱本体感觉和神经假肢控制。在本文中,我们概述了AMI的概念框架和临床前科学,其构建的外科技术,以及与疼痛缓解,幻肢运动范围,束束动力学,中枢脑本体感觉运动保存和假肢可控性相关的临床疗效。在这一广泛的概述之后,我们将讨论AMI当前的局限性以及应对这些挑战的潜在解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.60
自引率
0.00%
发文量
31
期刊介绍: The purpose of Techniques in Orthopaedics is to provide information on the latest orthopaedic procedure as they are devised and used by top orthopaedic surgeons. The approach is technique-oriented, covering operations, manipulations, and instruments being developed and applied in such as arthroscopy, arthroplasty, and trauma. Each issue is guest-edited by an expert in the field and devoted to a single topic.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信