Thomas Mika, Julia Thomson, Verena Nilius-Eliliwi, Deepak Vangala, Alexander Baraniskin, Gerald Wulf, Susanne Klein-Scory, Roland Schroers
{"title":"Quantification of cell-free DNAfor the analysis of CD19-CAR-T cells during lymphoma treatment.","authors":"Thomas Mika, Julia Thomson, Verena Nilius-Eliliwi, Deepak Vangala, Alexander Baraniskin, Gerald Wulf, Susanne Klein-Scory, Roland Schroers","doi":"10.1016/j.omtm.2021.10.009","DOIUrl":null,"url":null,"abstract":"<p><p>Chimeric antigen receptor (CAR)-T cells are increasingly used for the treatment of hematologic malignancies. Treatment success relies highly upon sufficient expansion of CAR-T effector cells. Accordingly, longitudinal quantification of CAR-T cells during therapy is clinically important. Techniques to quantify CAR-T cells in patient blood samples are based on flow cytometry and PCR. However, cellular kinetics of CAR-T cells are very complex and under current investigation. In this study, feasibility of CAR-T cell quantification by cell-free DNA (cfDNA) was analyzed. cfDNA isolated from 74 blood samples of 12 patients during lymphoma treatment with the anti-CD19 CAR-T cell product axicabtagene ciloleucel (axi-cel) were analyzed. Concentrations of cfDNA specific for the CAR-T gene construct (cfCAR-DNA) and a reference gene were quantified by a newly designed digital-droplet PCR (ddPCR) assay. Detection and quantification of cfCAR-DNA was feasible and reliable for all patients included. Relative quantification of cfCAR-DNA compared to a reference gene, suitable for genomic DNA analysis, was heterogeneous in treatment responders and non-responders. In contrast, parallel analyses of cfCAR-DNA and reference cfDNA in a patient-specific approach gave insight into active lymphoma killing and treatment responses. In summary, plasma cfDNA determination in lymphoma patients is a promising tool for future clinical decision making.</p>","PeriodicalId":517056,"journal":{"name":"Molecular Therapy. Methods & Clinical Development","volume":" ","pages":"539-550"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8606297/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy. Methods & Clinical Development","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtm.2021.10.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/10 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Chimeric antigen receptor (CAR)-T cells are increasingly used for the treatment of hematologic malignancies. Treatment success relies highly upon sufficient expansion of CAR-T effector cells. Accordingly, longitudinal quantification of CAR-T cells during therapy is clinically important. Techniques to quantify CAR-T cells in patient blood samples are based on flow cytometry and PCR. However, cellular kinetics of CAR-T cells are very complex and under current investigation. In this study, feasibility of CAR-T cell quantification by cell-free DNA (cfDNA) was analyzed. cfDNA isolated from 74 blood samples of 12 patients during lymphoma treatment with the anti-CD19 CAR-T cell product axicabtagene ciloleucel (axi-cel) were analyzed. Concentrations of cfDNA specific for the CAR-T gene construct (cfCAR-DNA) and a reference gene were quantified by a newly designed digital-droplet PCR (ddPCR) assay. Detection and quantification of cfCAR-DNA was feasible and reliable for all patients included. Relative quantification of cfCAR-DNA compared to a reference gene, suitable for genomic DNA analysis, was heterogeneous in treatment responders and non-responders. In contrast, parallel analyses of cfCAR-DNA and reference cfDNA in a patient-specific approach gave insight into active lymphoma killing and treatment responses. In summary, plasma cfDNA determination in lymphoma patients is a promising tool for future clinical decision making.