Hilary A Scott, Anna Larson, Shi Song Rong, Sudeep Mehrotra, Rossano Butcher, Katherine R Chao, Janey L Wiggs, Emily M Place, Eric A Pierce, Kinga M Bujakowska
{"title":"A hidden structural variation in a known IRD gene: a cautionary tale of two new disease candidate genes.","authors":"Hilary A Scott, Anna Larson, Shi Song Rong, Sudeep Mehrotra, Rossano Butcher, Katherine R Chao, Janey L Wiggs, Emily M Place, Eric A Pierce, Kinga M Bujakowska","doi":"10.1101/mcs.a006131","DOIUrl":null,"url":null,"abstract":"<p><p>Rod-cone dystrophy (RCD), also known as retinitis pigmentosa, is an inherited condition leading to vision loss, affecting 1 in 3500 people. More than 270 genes are known to be implicated in the inherited retinal degenerations (IRDs), yet genetic diagnosis for ∼30% of IRD of patients remains elusive despite advances in sequencing technologies. The goal of this study was to determine the genetic causality in a family with RCD. Family members were given a full ophthalmic exam at the Retinal Service at Massachusetts Eye and Ear and consented to genetic testing. Whole-exome sequencing (WES) was performed and variants of interest were Sanger-validated. Functional assays were conducted in zebrafish along with splicing assays in relevant cell lines to determine the impact on retinal function. WES identified variants in two potential candidate genes that segregated with disease: <i>GNL3</i> (G Protein Nucleolar 3) c.1187 + 3A > C and c.1568-8C > A; and <i>PDE4DIP</i> (Phosphodiester 4D Interacting Protein) c.3868G > A (p.Glu1290Lys) and c.4603G > A (p.Ala1535Thr). Both genes were promising candidates based on their retinal involvement (development and interactions with IRD-associated proteins); however, the functional assays did not validate either gene. Subsequent WES reanalysis with an updated bioinformatics pipeline and widened search parameters led to the detection of a 94-bp duplication in <i>PRPF31</i> (pre-mRNA Processing Factor 31) c.73_266dup (p.Asp56GlyfsTer33) as the causal variant. Our study demonstrates the importance of thorough functional characterization of new disease candidate genes and the value of reanalyzing next-generation sequencing sequence data, which in our case led to identification of a hidden pathogenic variant in a known IRD gene.</p>","PeriodicalId":10360,"journal":{"name":"Cold Spring Harbor Molecular Case Studies","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/20/4b/MCS006131Sco.PMC8958919.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Spring Harbor Molecular Case Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/mcs.a006131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/2/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Rod-cone dystrophy (RCD), also known as retinitis pigmentosa, is an inherited condition leading to vision loss, affecting 1 in 3500 people. More than 270 genes are known to be implicated in the inherited retinal degenerations (IRDs), yet genetic diagnosis for ∼30% of IRD of patients remains elusive despite advances in sequencing technologies. The goal of this study was to determine the genetic causality in a family with RCD. Family members were given a full ophthalmic exam at the Retinal Service at Massachusetts Eye and Ear and consented to genetic testing. Whole-exome sequencing (WES) was performed and variants of interest were Sanger-validated. Functional assays were conducted in zebrafish along with splicing assays in relevant cell lines to determine the impact on retinal function. WES identified variants in two potential candidate genes that segregated with disease: GNL3 (G Protein Nucleolar 3) c.1187 + 3A > C and c.1568-8C > A; and PDE4DIP (Phosphodiester 4D Interacting Protein) c.3868G > A (p.Glu1290Lys) and c.4603G > A (p.Ala1535Thr). Both genes were promising candidates based on their retinal involvement (development and interactions with IRD-associated proteins); however, the functional assays did not validate either gene. Subsequent WES reanalysis with an updated bioinformatics pipeline and widened search parameters led to the detection of a 94-bp duplication in PRPF31 (pre-mRNA Processing Factor 31) c.73_266dup (p.Asp56GlyfsTer33) as the causal variant. Our study demonstrates the importance of thorough functional characterization of new disease candidate genes and the value of reanalyzing next-generation sequencing sequence data, which in our case led to identification of a hidden pathogenic variant in a known IRD gene.
期刊介绍:
Cold Spring Harbor Molecular Case Studies is an open-access, peer-reviewed, international journal in the field of precision medicine. Articles in the journal present genomic and molecular analyses of individuals or cohorts alongside their clinical presentations and phenotypic information. The journal''s purpose is to rapidly share insights into disease development and treatment gained by application of genomics, proteomics, metabolomics, biomarker analysis, and other approaches. The journal covers the fields of cancer, complex diseases, monogenic disorders, neurological conditions, orphan diseases, infectious disease, gene therapy, and pharmacogenomics. It has a rapid peer-review process that is based on technical evaluation of the analyses performed, not the novelty of findings, and offers a swift, clear path to publication. The journal publishes: Research Reports presenting detailed case studies of individuals and small cohorts, Research Articles describing more extensive work using larger cohorts and/or functional analyses, Rapid Communications presenting the discovery of a novel variant and/or novel phenotype associated with a known disease gene, Rapid Cancer Communications presenting the discovery of a novel variant or combination of variants in a cancer type, Variant Discrepancy Resolution describing efforts to resolve differences or update variant interpretations in ClinVar through case-level data sharing, Follow-up Reports linked to previous observations, Plus Review Articles, Editorials, and Position Statements on best practices for research in precision medicine.