On compositions of special cases of Lipschitz continuous operators.

IF 1
Pontus Giselsson, Walaa M Moursi
{"title":"On compositions of special cases of Lipschitz continuous operators.","authors":"Pontus Giselsson,&nbsp;Walaa M Moursi","doi":"10.1186/s13663-021-00709-0","DOIUrl":null,"url":null,"abstract":"<p><p>Many iterative optimization algorithms involve compositions of special cases of Lipschitz continuous operators, namely firmly nonexpansive, averaged, and nonexpansive operators. The structure and properties of the compositions are of particular importance in the proofs of convergence of such algorithms. In this paper, we systematically study the compositions of further special cases of Lipschitz continuous operators. Applications of our results include compositions of scaled conically nonexpansive mappings, as well as the Douglas-Rachford and forward-backward operators, when applied to solve certain structured monotone inclusion and optimization problems. Several examples illustrate and tighten our conclusions.</p>","PeriodicalId":87256,"journal":{"name":"Fixed point theory and algorithms for sciences and engineering","volume":"2021 1","pages":"25"},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8685197/pdf/","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fixed point theory and algorithms for sciences and engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13663-021-00709-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/12/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Many iterative optimization algorithms involve compositions of special cases of Lipschitz continuous operators, namely firmly nonexpansive, averaged, and nonexpansive operators. The structure and properties of the compositions are of particular importance in the proofs of convergence of such algorithms. In this paper, we systematically study the compositions of further special cases of Lipschitz continuous operators. Applications of our results include compositions of scaled conically nonexpansive mappings, as well as the Douglas-Rachford and forward-backward operators, when applied to solve certain structured monotone inclusion and optimization problems. Several examples illustrate and tighten our conclusions.

Abstract Image

Abstract Image

Abstract Image

关于Lipschitz连续算子特殊情况的组合。
许多迭代优化算法涉及Lipschitz连续算子的特殊情况的组合,即坚定非扩张算子、平均算子和非扩张算子。这些组合的结构和性质在证明这些算法的收敛性时具有特别重要的意义。本文系统地研究了Lipschitz连续算子的其他特殊情况的组成。我们的研究结果在解决某些结构单调包含和优化问题时,包括了缩放的圆锥非扩张映射的组合,以及Douglas-Rachford算子和forward-backward算子。几个例子说明并强化了我们的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信