L Sahoo, S P Das, A Bit, S Patnaik, M Mohanty, G Das, P Das
{"title":"De novo assembly, transcriptome characterization and marker discovery in Indian major carp, Labeo rohita through pyrosequencing.","authors":"L Sahoo, S P Das, A Bit, S Patnaik, M Mohanty, G Das, P Das","doi":"10.1007/s10709-021-00141-7","DOIUrl":null,"url":null,"abstract":"<p><p>Labeo rohita, one of the Indian major carps, is the most popular culture species in Indian subcontinent due to its consumer preference and delicacy. A selective breeding program for harvest body weight has resulted in an average genetic gain of 17% per generation. Transcriptome resource for this species is scanty. Here, we have characterized the liver and muscle transcriptomes of rohu using Roche 454 GS-FLX next generation sequencing platform. In total, 1.2 million reads were generated, de novo assembly and clustering resulted in 4171 transcripts. Out of these, 4171 had significant blast hit against NCBI nr database, and 2130 transcripts were successfully annotated. In total, 289 SSRs were identified with an identification rate of 5.8%, and dinucleotide repeat motifs were observed to be the most abundant SSRs. Further, 2231 putative SNPs were identified with high confidence. Validation of eight putative SNPs using Sanger sequencing resulted in 100% true SNPs. Significant allelic imbalance of M1, M4 and M5 loci between growth selected and control individual were observed. Furthermore, 13 transcription factors were identified in the present study belonging to six different transcription factor families. The present study demonstrated the utility of RNAseq to develop genomics resources in non-model fish species, and the marker resources developed would support the genetic improvement program of this species.</p>","PeriodicalId":55121,"journal":{"name":"Genetica","volume":"150 1","pages":"59-66"},"PeriodicalIF":1.3000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10709-021-00141-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/11/26 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Labeo rohita, one of the Indian major carps, is the most popular culture species in Indian subcontinent due to its consumer preference and delicacy. A selective breeding program for harvest body weight has resulted in an average genetic gain of 17% per generation. Transcriptome resource for this species is scanty. Here, we have characterized the liver and muscle transcriptomes of rohu using Roche 454 GS-FLX next generation sequencing platform. In total, 1.2 million reads were generated, de novo assembly and clustering resulted in 4171 transcripts. Out of these, 4171 had significant blast hit against NCBI nr database, and 2130 transcripts were successfully annotated. In total, 289 SSRs were identified with an identification rate of 5.8%, and dinucleotide repeat motifs were observed to be the most abundant SSRs. Further, 2231 putative SNPs were identified with high confidence. Validation of eight putative SNPs using Sanger sequencing resulted in 100% true SNPs. Significant allelic imbalance of M1, M4 and M5 loci between growth selected and control individual were observed. Furthermore, 13 transcription factors were identified in the present study belonging to six different transcription factor families. The present study demonstrated the utility of RNAseq to develop genomics resources in non-model fish species, and the marker resources developed would support the genetic improvement program of this species.
期刊介绍:
Genetica publishes papers dealing with genetics, genomics, and evolution. Our journal covers novel advances in the fields of genomics, conservation genetics, genotype-phenotype interactions, evo-devo, population and quantitative genetics, and biodiversity. Genetica publishes original research articles addressing novel conceptual, experimental, and theoretical issues in these areas, whatever the taxon considered. Biomedical papers and papers on breeding animal and plant genetics are not within the scope of Genetica, unless framed in an evolutionary context. Recent advances in genetics, genomics and evolution are also published in thematic issues and synthesis papers published by experts in the field.