Baseline Photos and Confident Annotation Improve Automated Detection of Cutaneous Graft-Versus-Host Disease.

Clinical Hematology International Pub Date : 2021-07-15 eCollection Date: 2021-09-01 DOI:10.2991/chi.k.210704.001
Xiaoqi Liu, Kelsey Parks, Inga Saknite, Tahsin Reasat, Austin D Cronin, Lee E Wheless, Benoit M Dawant, Eric R Tkaczyk
{"title":"Baseline Photos and Confident Annotation Improve Automated Detection of Cutaneous Graft-Versus-Host Disease.","authors":"Xiaoqi Liu,&nbsp;Kelsey Parks,&nbsp;Inga Saknite,&nbsp;Tahsin Reasat,&nbsp;Austin D Cronin,&nbsp;Lee E Wheless,&nbsp;Benoit M Dawant,&nbsp;Eric R Tkaczyk","doi":"10.2991/chi.k.210704.001","DOIUrl":null,"url":null,"abstract":"<p><p>Cutaneous erythema is used in diagnosis and response assessment of cutaneous chronic graft-versus-host disease (cGVHD). The development of objective erythema evaluation methods remains a challenge. We used a pre-trained neural network to segment cGVHD erythema by detecting changes relative to a patient's registered baseline photo. We fixed this change detection algorithm on human annotations from a single photo pair, by using either a traditional approach or by marking definitely affected (\"Do Not Miss\", DNM) and definitely unaffected skin (\"Do Not Include\", DNI). The fixed algorithm was applied to each of the remaining 47 test photo pairs from six follow-up sessions of one patient. We used both the Dice index and the opinion of two board-certified dermatologists to evaluate the algorithm performance. The change detection algorithm correctly assigned 80% of the pixels, regardless of whether it was fixed on traditional (median accuracy: 0.77, interquartile range 0.62-0.87) or DNM/DNI segmentations (0.81, 0.65-0.89). When the algorithm was fixed on markings by different annotators, the DNM/DNI achieved more consistent outputs (median Dice indices: 0.94-0.96) than the traditional method (0.73-0.81). Compared to viewing only rash photos, the addition of baseline photos improved the reliability of dermatologists' scoring. The inter-rater intraclass correlation coefficient increased from 0.19 (95% confidence interval lower bound: 0.06) to 0.51 (lower bound: 0.35). In conclusion, a change detection algorithm accurately assigned erythema in longitudinal photos of cGVHD. The reliability was significantly improved by exclusively using confident human segmentations to fix the algorithm. Baseline photos improved the agreement among two dermatologists in assessing algorithm performance.</p>","PeriodicalId":10368,"journal":{"name":"Clinical Hematology International","volume":"3 3","pages":"108-115"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/48/14/CHI-3-3-108.PMC8486973.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Hematology International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/chi.k.210704.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Cutaneous erythema is used in diagnosis and response assessment of cutaneous chronic graft-versus-host disease (cGVHD). The development of objective erythema evaluation methods remains a challenge. We used a pre-trained neural network to segment cGVHD erythema by detecting changes relative to a patient's registered baseline photo. We fixed this change detection algorithm on human annotations from a single photo pair, by using either a traditional approach or by marking definitely affected ("Do Not Miss", DNM) and definitely unaffected skin ("Do Not Include", DNI). The fixed algorithm was applied to each of the remaining 47 test photo pairs from six follow-up sessions of one patient. We used both the Dice index and the opinion of two board-certified dermatologists to evaluate the algorithm performance. The change detection algorithm correctly assigned 80% of the pixels, regardless of whether it was fixed on traditional (median accuracy: 0.77, interquartile range 0.62-0.87) or DNM/DNI segmentations (0.81, 0.65-0.89). When the algorithm was fixed on markings by different annotators, the DNM/DNI achieved more consistent outputs (median Dice indices: 0.94-0.96) than the traditional method (0.73-0.81). Compared to viewing only rash photos, the addition of baseline photos improved the reliability of dermatologists' scoring. The inter-rater intraclass correlation coefficient increased from 0.19 (95% confidence interval lower bound: 0.06) to 0.51 (lower bound: 0.35). In conclusion, a change detection algorithm accurately assigned erythema in longitudinal photos of cGVHD. The reliability was significantly improved by exclusively using confident human segmentations to fix the algorithm. Baseline photos improved the agreement among two dermatologists in assessing algorithm performance.

Abstract Image

Abstract Image

Abstract Image

基线照片和自信注释提高了皮肤移植物抗宿主病的自动检测。
皮肤红斑被用于皮肤慢性移植物抗宿主病(cGVHD)的诊断和反应评估。发展客观的红斑评估方法仍然是一个挑战。我们使用预先训练的神经网络,通过检测与患者注册基线照片相关的变化来分割cGVHD红斑。我们通过使用传统方法或标记明显受影响的皮肤(“不遗漏”,DNM)和明显未受影响的皮肤(“不包括”,DNI),在单个照片对的人类注释上修复了这种变化检测算法。固定算法应用于来自一名患者的六次随访的其余47对测试照片中的每对。我们使用Dice指数和两位认证皮肤科医生的意见来评估算法的性能。无论它是固定在传统(中位数精度:0.77,四分位数间距0.62-0.87)还是DNM/DNI分割(0.81,0.65-0.89)上,变化检测算法都正确分配了80%的像素。当算法固定在不同标注者的标记上时,DNM/DNI比传统方法(0.73-0.81)获得了更一致的输出(中位数Dice指数:0.94-0.96)。与仅查看皮疹照片相比,添加基线照片提高了皮肤科医生评分的可靠性。评级间的类内相关系数从0.19(95%置信区间下界:0.06)增加到0.51(下界:0.35)。综上所述,一种变化检测算法可以准确地在cGVHD纵向照片中分配红斑。通过专门使用自信的人类分割来修复算法,可靠性显着提高。基线照片提高了两位皮肤科医生在评估算法性能方面的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信