Deciphering Plant Chromatin Regulation via CRISPR/dCas9-Based Epigenome Engineering.

IF 2.5 Q3 GENETICS & HEREDITY
Annick Dubois, François Roudier
{"title":"Deciphering Plant Chromatin Regulation via CRISPR/dCas9-Based Epigenome Engineering.","authors":"Annick Dubois,&nbsp;François Roudier","doi":"10.3390/epigenomes5030017","DOIUrl":null,"url":null,"abstract":"<p><p>CRISPR-based epigenome editing uses dCas9 as a platform to recruit transcription or chromatin regulators at chosen loci. Despite recent and ongoing advances, the full potential of these approaches to studying chromatin functions in vivo remains challenging to exploit. In this review we discuss how recent progress in plants and animals provides new routes to investigate the function of chromatin regulators and address the complexity of associated regulations that are often interconnected. While efficient transcriptional engineering methodologies have been developed and can be used as tools to alter the chromatin state of a locus, examples of direct manipulation of chromatin regulators remain scarce in plants. These reports also reveal pitfalls and limitations of epigenome engineering approaches that are nevertheless informative as they are often associated with locus- and context-dependent features, which include DNA accessibility, initial chromatin and transcriptional state or cellular dynamics. Strategies implemented in different organisms to overcome and even take advantage of these limitations are highlighted, which will further improve our ability to establish the causality and hierarchy of chromatin dynamics on genome regulation.</p>","PeriodicalId":55768,"journal":{"name":"Epigenomes","volume":"5 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2021-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8594717/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/epigenomes5030017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 4

Abstract

CRISPR-based epigenome editing uses dCas9 as a platform to recruit transcription or chromatin regulators at chosen loci. Despite recent and ongoing advances, the full potential of these approaches to studying chromatin functions in vivo remains challenging to exploit. In this review we discuss how recent progress in plants and animals provides new routes to investigate the function of chromatin regulators and address the complexity of associated regulations that are often interconnected. While efficient transcriptional engineering methodologies have been developed and can be used as tools to alter the chromatin state of a locus, examples of direct manipulation of chromatin regulators remain scarce in plants. These reports also reveal pitfalls and limitations of epigenome engineering approaches that are nevertheless informative as they are often associated with locus- and context-dependent features, which include DNA accessibility, initial chromatin and transcriptional state or cellular dynamics. Strategies implemented in different organisms to overcome and even take advantage of these limitations are highlighted, which will further improve our ability to establish the causality and hierarchy of chromatin dynamics on genome regulation.

Abstract Image

Abstract Image

Abstract Image

基于CRISPR/ dcas9的表观基因组工程解读植物染色质调控
基于crispr的表观基因组编辑使用dCas9作为平台,在选定的位点上招募转录或染色质调节因子。尽管最近和正在进行的进展,这些方法在体内研究染色质功能的全部潜力仍然具有挑战性。在这篇综述中,我们讨论了植物和动物的最新进展如何为研究染色质调节因子的功能和解决通常相互关联的相关调节的复杂性提供了新的途径。虽然有效的转录工程方法已经开发出来,并且可以用作改变基因座染色质状态的工具,但在植物中直接操纵染色质调节因子的例子仍然很少。这些报告还揭示了表观基因组工程方法的缺陷和局限性,尽管如此,表观基因组工程方法仍然具有信息性,因为它们通常与位点和上下文依赖的特征相关,包括DNA可及性、初始染色质和转录状态或细胞动力学。强调了在不同生物体中实施的克服甚至利用这些限制的策略,这将进一步提高我们建立基因组调控的染色质动力学因果关系和层次结构的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Epigenomes
Epigenomes GENETICS & HEREDITY-
CiteScore
3.80
自引率
0.00%
发文量
38
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信